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Abstract

This paper aims to leverage the covariances of different contributors’ preferences to perform
Byzantine collaborative filtering. Interestingly, we show that this also allows to “listen to the
silent majority”, thereby correcting for activity bias in a secure way. We believe that our results
represent a major milestone in the quest for fair, ethical and secure algorithms.

1 Introduction

Today’s most influential learning algorithms rely on massive amounts of user-generated data. How-
ever, because some users are much more active on social medias than others, this creates a very
concerning algorithmic activity bias. Namely, algorithms are shaped by users that engage the most
in online debates. Such users are unlikely to be representative of all users; as a results, today’s
algorithms fail to account for the actual diversity of online users. New solutions are needed to
“listen to the silent majority”.

The combination of collaborative filtering and personalized federated learning seems to yield a
promising framework to precisely this. Intuitively, this will correspond to amplifying the voice of
those who seem to speak in the name of a large silent majority, which is underrepresented in the
set of active users.

However, such a system may be especially vulnerable to Byzantine attacks. Namely, disinfor-
mation campaigns may create fake accounts, which claim to belong to underrepresented groups. In
this paper, we propose the first voting mechanism that corrects for activity bias, while providing
security guarantees against Byzantine attacks.

Licchavi is a framework introduced by [FGH21].

2 The quadratically regularized geometric median primitives

In this section, we introduce two key primitives, which have very desirable properties to guaran-
tee fairness and security. Their construction builds upon the “one person, one unit force” prin-
ciple [EFGH21, FGH21], while also accounting for uncertainty and strong Byzantine resilience
guarantees [AGHV22].
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2.1 Quadratically regularized geometric median for vectors

Consider a set [N ] , {1, . . . , N} of users, each with a given voting right wn ≥ 0 and an unknown
preferred vector xn ∈ Rd. Suppose that our knowledge of this preferred vector is best described by
a (Bayesian) prior x̃n over Rd. Then, for any voting resilience hyperparameter W ≥ 0, we define
the quadratically regularized geometric median of the users’ preferred vectors by

QrGmW,x0
(w1:N , x̃1:N ) , arg min

x∈Rd

1

2
W ‖x− x0‖22 +

∑
n∈[N ]

wnExn←x̃n ‖x− xn‖2

 . (1)

Clearly, for W = 0 and deterministic priors x̃n, we retrieve the classical geometric median. How-
ever, intuitively, QrGmW has a more Bayesian flavor. On one hand, it allows to consider non-
deterministic priors x̃n. On the other hand, the term 1

2W ‖x− x0‖22 can be regarded as a prior on
the geometric median, which we assume to be more likely to be close to x0 a priori. Interestingly,
this term also guarantees the existence and uniqueness of the quadratically regularized geometric
median.

Proposition 1. For any voting resilience W > 0, voting rights w1:N and priors x̃1:N , the quadrat-
ically regularized geometric median QrGmW,x0

(w1:N , x̃1:N ) is well-defined.

Proof. The regularization 1
2W ‖x− x0‖22 guarantees W -strong convexity, which implies the exis-

tence and uniqueness of a minimum.

More importantly, QrGm guarantees an interesting form of Byzantine resilience, which was
first studied by [AGHV22].

Conjecture 1 (99% credence in truth and our capability to prove it). For any W ≥ 0 and x0 ∈ Rd,
QrGmW,x0

is W -Byzantine resilient. More precisely, for any subset F ⊂ [N ], then ignoring the
inputs from such users only moves QrGmW,x0

by at most their cumulative voting rights divided by
the voting resilience W , i.e.∥∥QrGmW,x0

(w1:N , x̃1:N )−QrGmW,x0
(w[N ]−F , x̃[N ]−F )

∥∥
2
≤ 1

W

∑
f∈F

wf . (2)

Another desirable property of QrGm is that it belongs to the convex hull of its inputs. More
precisely, define Supp(x̃) the support of the distribution x̃, and Hull(x1, . . . , xN ) the convex hull
of its input vectors. We also generalize straightforwadly Hull to inputs that are subsets of vectors.
Then the following holds.

Conjecture 2 (99% credence in truth and our capability to prove it). For any W ≥ 0 and x0 ∈ Rd,
QrGmW,x0

belongs to the convex hull of x0 and of the supports of its input vector distributions,
i.e.,

QrGmW,x0
(w1:N , x̃1:N ) ∈ Hull (x0,Supp(x̃1), . . . ,Supp(x̃N )) . (3)

2.2 Quadratically regularized geometric median for matrices

Note that QrGmW can be generalized to matrix distributions S̃1:N instead of vector distributions
θ̃1:N , by using the Frobenius norm instead of the Euclidean norm. Recall that the Frobenius norm
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is given by

‖S‖2Frob , Tr SST =

d∑
i=1

d∑
j=1

S2
ij . (4)

The quadratically regularized geometric median for matrices is then given by

QrGmW,S0
(w1:N , S̃1:N ) , arg min

S∈Rd×d

1

2
W ‖S − S0‖2Frob +

∑
n∈[N ]

wnESn←S̃n
‖S − Sn‖Frob

 . (5)

Evidently, the lemmas of the previous section still apply to this operator. Interestingly, this has
the following consequence.

Conjecture 3. Suppose S0 and all matrices Sn’s are positive semi-definite with probability 1. Then
QrGmW,S0

(w1:N , S̃1:N ) is also positive semi-definite.

3 The covariant Licchavi algorithm

As earlier, we assume that each user n ∈ [N ] has an unknown preferred model θn ∈ Rd. However,
we now consider that each user provides a signed dataset Dn for n ∈ [N ] which partially reveals
this preferred model. This dataset may provide personal socio-democraphic data about the user,
or a set of answers that the user provided to different queries. The goal of collaborative filtering is
to determine a posterior distribution θ̃n on θn, given not only the user’s data Dn, but also given
other users’ data Dm, for m 6= n. However, we want to achieve this in a Byzantine-resilient manner,
meaning that θ̃CL

n should remain reasonable, despite the presence of a subset F ⊂ [N ] of malicious
users. In particular, θ̃CL

n should not be too distant from what it would have been, if the subset F
of malicious users had been identified and discarded.

In this section, we introduce a new algorithm to achieve this, called CovariantLicchavi (in
short, CL). CovariantLicchavi is composed of three stages. First, a local posterior θ̃Localn is
determined for each user n ∈ [N ], based solely on the user’s local dataset Dn. Second, the primitives
introduced in Section 2 are leveraged to determine a Byzantine-resilient covariant matrix ΣCL,
which determines correlations between different coordinates of users’ preferred models. Third,
and finally, the Licchavi algorithm [FGH21] is adapted, to leverage this covariant matrix and
guarantee collaborative filtering, thereby computing CovariantLicchavi posteriors θ̃CL

n for all
users n ∈ [N ]. Note that a fourth step may be added, to perform Byzantine-resilient Bayesian
voting, by simply also outputting the global model ρ̃CL computed by our adaptation of Licchavi.

3.1 Purely local models

In principle, a user n’s purely local distribution θ̃Localn can be obtained by consider a prior distri-
bution θ̃Priorn , and by conditioning it to the dataset Dn. In practice, however, this operation may
be computationally intractable. There may then be different ways to recover an approximation of
the posterior given dataset Dn (or at least, to sample from this posterior distribution).

The basic solution is to consider a local loss function LLocal(θn|Dn), which may be defined as
the negative log-posterior on θn, given Dn. A minimum θLocaln of this loss would then correspond
to a maximum-a-posteriori. Assuming that the local loss LLocal is twice differentiable, then the
Hessian matrix ∇2LLocal(θLocaln |Dn) can be regarded as an estimation of the posterior covariance
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on θLocaln , given the local dataset Dn. More precisely, defining ΣLocal
n , 1

2∇
2LLocal(θLocaln |Dn)−1,

we may approximate the posterior on θn by the normal distribution N
(
θLocaln ,ΣLocal

n

)
.

An alternative solution, which allows sampling without the costly computation of ΣLocal
n , con-

sists of adding a random noise ξLocaln to θLocaln , and to assign a weight to this noise proportional
to exp

(
−LLocal(θLocaln + ξLocaln |Dn)

)
.

3.2 Covariant matrix estimator

We now consider a first Byzantine mean estimation ρLocal of the users’ preferred models, by simply
applying a zero-centered quadratically regularized geometric median primitive, i.e.,

ρLocal , QrGmW,0(w1:N , θ̃
Local
1:N ). (6)

For each user n ∈ [N ], we then define the user’s CovariantLicchavi matrix distribution Σ̃CL
n ,

obtained by drawing θLocaln from θ̃Localn and returning the positive semi-definite matrix (ρLocal −
θLocaln )(ρLocal − θLocaln )T . Intuitively, this is a distribution over matrices that describe how the
user’s purely local model θLocaln probably diverges from the Byzantine mean estimation ρLocal of
all users’ preferred models. The aggregate CovariantLicchavi matrix ΣCL is then obtained by
aggregating all users’ matrix distributions Σ̃CL

n , using the identity-centered quadratically regularized
geometric median primitive, i.e.

ΣCL , QrGmW,I(w1:N , Σ̃
CL
1:N ). (7)

3.3 Skewed Licchavi

We now propose to adapt Licchavi by leveraging the CovariantLicchavi covariant matrix ΣCL.
We do so by penalizing the discrepancy between a local model and the global model, especially
when they are distant according to the covariant matrix ΣCL. More precisely, for any semi-definite
positive matrix S � 0, define the Mahalanobis norm ‖x‖2S , xTS−1x. Note that this norm can take
infinite values, when x does not belong to the image of S. We then define the CovariantLicchavi
loss by

CL(ρ, θ1:N |W,D1:N ) =
1

2
W ‖ρ‖22 +

∑
n∈[N ]

LLocal(θn|Dn) +
∑
n∈[N ]

wn ‖ρ− θn‖ΣCL . (8)

4 Algorithm

Describe an algorithm. Implement. Test performances.

5 Theorems

Conjecture 4 (To be defined). Covariant-Licchavi is Byzantine-resilient.

Conjecture 5. There’s a connection with SVD (to be found).

Conjecture 6. The covariance matrix is PAC-learned by covariant-Licchavi.
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6 Conclusion

This is breakthrough paper.
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sparse voting. CoRR, abs/2202.08656, 2022.

[EFGH21] El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, and Lê Nguyên Hoang.
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