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Section 1

Adversarial machine learning 101

Calicarpa ML Security 2 / 46



Three families of attacks

(+1)

Privacy attack

Extract information from model training and/or trained model and/or trained model’s actions.

Evasion attacks

Exploit the imperfections of the trained model.

Poisoning attacks (this talk)

Bias the model training to harm/bias/backdoor the trained model.

Misuse

Reuse published models for harmful purposes.
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Privacy attacks: ML is learning from extremely sensitive data

Figure: Google has already been deploying high-dimensional language models on billions of phones,
without users’ informed consent and without an adequate understanding of privacy & security risks
(extract from an ArXiV paper by Google authors).
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Privacy attacks: Big Tech companies can be hacked by spies!
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Evasion attacks: Toxic detection cannot be statically measured!
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Misuse: Weapons of mass harassment

Calicarpa ML Security 7 / 46



Three families of poisoning attacks

Data poisoning

Inject malicious data to harm/bias/backdoor.

Byzantine attack (in distributed settings)

Components of the training system collude to harm/bias/backdoor.

Single point of failure attacks

A central authority of the training system (secretly & possibly undetectably)
harms/biases/backdoors the trained model.
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Data poisoning is ubiquitous in large-scale (lucrative) applications
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Language models are infected!
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How bad can it get?
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More alarming than climate change?
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But are AIs really responsible for the rise of authoritarianism?
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“Accomplices of a terrible crime”

“Today is the sixth day that,
on the main page of Yandex,

at least 30 millions Russian users
are seeing that there is no war.”

“Every day and hour of such ‘news’
costs human lives.”

“It’s not too late to stop being
accomplices of a terrible crime.

If you can’t do anything, quit.”

Lev Gershenzon,
former Yandex news head (2022).
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Recommendation algorithms are endangering all human societies
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Their governance is too often too dictatorial
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Section 2

ML security needs mathematicians
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The mathematics of security

Can we provably guarantee that
adversaries cannot cause harm/bias/backdoor?

Security theorem

∃ALG, ∀instance,∀attack, ALG(instance,attack) safe enough.

Impossible security theorem

∀ALG, ∃instance,∃attack, ALG(instance,attack) too dangerous.
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ML security against data poisoning

Security theorem

∃Learn, ∀datahonest , ∀dataadversary , Learn(datahonest ,attackadversary ) safe enough.

Impossible security theorem

∀Learn, ∃datahonest ,∃dataadversary , Learn(datahonest ,attackadversary ) too dangerous.
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An equivalence between data poisoning and Byzantine attacks

Theorem (simplified, GFHV (ICML 2022))

For personalized federated logistic/linear regression, any bias caused by a Byzantine attack can
be obtained through a data poisoning attack.
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An equivalence between learning and averaging

Theorem (simplified, EFGGHR, NeurIPS 2021)

C -secure collaborative learning can be solved, if and only if, C -secure averaging can be solved.

Calicarpa ML Security 21 / 46



Equivalence ML-Averaging

Each honest user h ∈ H has a (data-dependent) local loss Lh.

Honest users aim to minimize their cumulative loss LH ,
∑
Lh.

But they are attacked by Byzantines, who are (a priori) indistinguishable from honest users.

Denote Learn(
−→
LH ,Byz) the learned model when attacked by Byzantines’ algorithm Byz.

Theorem (informal, EFGGHR, NeurIPS 2021)

There is an algorithm Learn that guarantees

∀
−→
LH , ∀Byz, ||∇LH(Learn(

−→
LH ,Byz))||2 ≤ C ·Heterogeneity(

−→
LH), (1)

if and only if, there is an algorithm Avg that guarantees

∀−→x H ∈ (Rd)H , ∀Byz, ||xH −Avg(−→x H ,Byz)||2 ≤ C ·Diameter(−→x H). (2)
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The (deceptively secure) homogeneous case

Corollary

Assuming homogeneity, synchronous communications and a strict majority of honest users,
then learning can be fully secured.

Corollary

Assuming homogeneity, asynchronous communications and twice more honest users than
Byzantines, then learning can be fully secured.

Theorem (informal, FGGHPS 2022)

Assuming homogeneity and 10 times more honest users than adversaries, there is an efficient
fully secured algorithm Learn. In particular, its computation times grows as O(1/ε2).
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Heterogeneity is a security killer

Theorem (simplified, EFGGHR, NeurIPS 2021)

Assuming f Byzantines, no algorithm Avg can guarantee

∀−→x H ∈ (Rd)H , ∀Byz, ||xH −Avg(−→x H ,Byz)||2 ≤
f

2h
·Diameter(−→x H). (3)

Corollary (simplified, EFGGHR, NeurIPS 2021)

Assuming f Byzantines, no algorithm Learn can guarantee

∀
−→
LH , ∀Byz, ||∇LH(Learn(

−→
LH ,Byz))||2 ≤

f

2h
·Heterogeneity(

−→
LH). (4)

Corollary

Assuming Heterogeneity = Ω(
√

d), the worst-case harm grows as Ω(f
√

d/h).

Calicarpa ML Security 24 / 46



Heterogeneity is a security killer

Theorem (simplified, EFGGHR, NeurIPS 2021)

Assuming f Byzantines, no algorithm Avg can guarantee

∀−→x H ∈ (Rd)H , ∀Byz, ||xH −Avg(−→x H ,Byz)||2 ≤
f

2h
·Diameter(−→x H). (3)

Corollary (simplified, EFGGHR, NeurIPS 2021)

Assuming f Byzantines, no algorithm Learn can guarantee

∀
−→
LH , ∀Byz, ||∇LH(Learn(

−→
LH ,Byz))||2 ≤

f

2h
·Heterogeneity(

−→
LH). (4)

Corollary

Assuming Heterogeneity = Ω(
√

d), the worst-case harm grows as Ω(f
√

d/h).

Calicarpa ML Security 24 / 46



Heterogeneity is a security killer

Theorem (simplified, EFGGHR, NeurIPS 2021)

Assuming f Byzantines, no algorithm Avg can guarantee

∀−→x H ∈ (Rd)H , ∀Byz, ||xH −Avg(−→x H ,Byz)||2 ≤
f

2h
·Diameter(−→x H). (3)

Corollary (simplified, EFGGHR, NeurIPS 2021)

Assuming f Byzantines, no algorithm Learn can guarantee

∀
−→
LH , ∀Byz, ||∇LH(Learn(

−→
LH ,Byz))||2 ≤

f

2h
·Heterogeneity(

−→
LH). (4)

Corollary

Assuming Heterogeneity = Ω(
√

d), the worst-case harm grows as Ω(f
√

d/h).

Calicarpa ML Security 24 / 46



Heterogeneity is a security killer

Theorem (simplified, EFGGHR, NeurIPS 2021)

Assuming f Byzantines, no algorithm Avg can guarantee

∀−→x H ∈ (Rd)H , ∀Byz, ||xH −Avg(−→x H ,Byz)||2 ≤
f

2h
·Diameter(−→x H). (3)

Corollary (simplified, EFGGHR, NeurIPS 2021)

Assuming f Byzantines, no algorithm Learn can guarantee

∀
−→
LH , ∀Byz, ||∇LH(Learn(

−→
LH ,Byz))||2 ≤

f

2h
·Heterogeneity(

−→
LH). (4)

Corollary

Assuming Heterogeneity = Ω(
√

d), the worst-case harm grows as Ω(f
√

d/h).

Calicarpa ML Security 24 / 46



Single point of failures are also a security killer
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Decentralization as a security measure

Send data

or gradients
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Decentralization as a security measure
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And yet our math is flawed!
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Section 3

Four other takeaways of our research
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Metadata matter!

Data must be signed and traceable.

(most of data poisoning research fails to leverage structure in datasets to increase security...)
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The “ground truth” myth

The most impactful ML applications
(language, recommendations, ad targeting...)

have no ground truth.

Instead, we should (securely) search for
(scientific and moral) consensus and compromises.
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Learning as a vote
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A new fairness principle

“One person, one unit force”,
as a fairness and security (voting) principle.

(as opposed to outlier removal, which amounts to silencing marginal views. . . )
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Section 4

Tournesol
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Tournesol
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Tournesol’s data
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Tournesol’s recommendations on YouTube
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Sparse voting is extremely vulnerable

Extreme sparsity

Most alternatives have never been rated.

Byzantine vulnerability

Alternatives that no one scored are extremely vulnerable.

Corollary

Under extreme sparsity, median-based recommendation algorithms are extremely dangerous!
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Byzantine resilience revisited

Definition

alg is W -Byzantine resilient if, for any voting rights w ,w ′ ∈ RN
+ and any inputs x ∈ XN ,

|alg(w , x)− alg(w ′, x)| ≤ ||w − w ′||1
W

. (5)

Definition (W -quadratically regularized median)

QrMedW (w , x) , arg min
m∈R

1

2
Wm2 +

∑
n∈[N]

wn|xn −m|

 . (6)

Theorem

For all W > 0, QrMedW is W -Byzantine resilient.
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The French reviewer problem

Biased sparsity

Each reviewer will more likely rate some alternatives rather than others.

The French reviewer problem

Some alternatives may be scored by systematically unsatisfied reviewers.

The Marseillais reviewer problem

Top alternatives may be those scored by users with extreme judgments.

Theorem (Von Neumann - Morgenstern (1944))

VNM utility functions are only defined up to a positive affine transformation.
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Robust sparse voting

Definition (Sparse unanimity, informal)

If all users actually unanimously agree (up to an affine transformation), if all alternatives are
scored by sufficiently many users, and if all pairs of users have scored sufficiently many
alternatives in common, then the vote must output the unanimous preference (up to an affine
transformation).

Theorem (AGHV (2022))

For all W > 0, there is an algorithm (called W -Mehestan) that guarantees both sparse
unanimity and W -Byzantine resilience.
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Tournesol’s contributors are labeling videos & texts. Use us!
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Section 5

Conclusion
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Machine learning working hypotheses must urgently be revised

The most widespread dangerously unrealistic assumption in ML

“Assume iid data...”

The most widespread politically biased assumption in ML

“We minimize the data-fitting loss...”

The most widespread unscientific security research in ML

“We empirically find that our system is robust...”
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Complicit by “effectively turning a blind eye”
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The machine learning community also has very dangerous habits
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Massive investments in cybersecurity are urgently needed
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