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Section 1

Impossibility theorems in ML security
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The framework

Signed data

We consider a set [N] = {1, 2, . . . ,N} of data sources (users).
Each source n ∈ [N] provides a signed dataset Dn.

We denote
−→
D = (D1, . . . ,DN) the tuple of source’s datasets.

Performance measure

Minimize Loss(θ|
−→
D ) ,

∑
n∈[N] L(θ|Dn) +R(θ).

Privacy constraints

User-level differential privacy: P[Learn(
−→
D ) ∈ S ] ≤ eεP[Learn(

−→
D−n) ∈ S ] + δ.

Security constraints

Resilience to data poisoning: ∀H ⊂ [N], Loss(Learn(
−→
D )|
−→
DH) small.
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An equivalence between data poisoning and gradient attacks

Performance measure

Minimize Loss(θ|
−→
D ) ,

∑
n∈[N] L(θ|Dn) +R(θ).

Personalized federated learning

Each source n is given a personalized model ϕn:

L(θ|Dn) , infϕn

{
Rn(ϕn, θ) +

∑
(y ,z)∈Dn

`(fϕn(y), z)
}

.

Theorem (Farhadkhani, Guerraoui, H and Villemaud (ICML 2022))

Assume Rn is `22, `2 or smooth-`2, and assume ` does logistic or linear regression (and

consider R is convex). Fix
−→
D−n. Consider any converging (admissible) gradient attack

g t
n → g♠n by source n, implying a learned model θ†. Then, for any ε > 0, there exists a

poisoning dataset D♠n such that ||θ† − θ∗(
−→
D−n,D♠n )||2 ≤ ε.
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Proof sketch

Lemma (easy)

g♠n is equivalent to an attack model ϕ♠n , reconstructible from θ♠.

Lemma (easy)

Assuming local PAC* learning, ϕ♠n is equivalent to a poisoning dataset D♠n , which labels
randomly drawn data with model ϕ♠n .

Lemma (not difficult)

Gradient PAC* of ` implies local PAC* learning.

Lemma (not easy)

Logistic and linear regression with spanning random features satisfy gradient PAC*.
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Gradient PAC*

Definition

Let E(D, ϕ†, I,A,B, α) defined by

∀ϕ ∈ Rd , (ϕ− ϕ†)T
∑
(y ,z)

∇`(fϕ(y), z) ≥ AI min
{
||ϕ− ϕ†||2, ||ϕ− ϕ†||22

}
− BIα||ϕ− ϕ†||2.

The loss ` is gradient-PAC* if, for any K > 0, there exists AK ,BK > 0 and αK < 1 such that,
for any ϕ† ∈ B(0,K ), assuming that the dataset D is obtained by honestly collecting and
labeling I data points according to the preferred model θ†, the probability of
E(D, ϕ†, I,AK ,BK , αK ) goes to 1 as I → ∞.

Lemma

Gradient PAC* of ` implies local PAC* learning. Moreover, logistic and linear regression with
spanning random features satisfy gradient PAC*.

Calicarpa Impossible Security 6 / 32



Gradient PAC*

Definition

Let E(D, ϕ†, I,A,B, α) defined by

∀ϕ ∈ Rd , (ϕ− ϕ†)T
∑
(y ,z)

∇`(fϕ(y), z) ≥ AI min
{
||ϕ− ϕ†||2, ||ϕ− ϕ†||22

}
− BIα||ϕ− ϕ†||2.

The loss ` is gradient-PAC* if, for any K > 0, there exists AK ,BK > 0 and αK < 1 such that,
for any ϕ† ∈ B(0,K ), assuming that the dataset D is obtained by honestly collecting and
labeling I data points according to the preferred model θ†, the probability of
E(D, ϕ†, I,AK ,BK , αK ) goes to 1 as I → ∞.

Lemma

Gradient PAC* of ` implies local PAC* learning. Moreover, logistic and linear regression with
spanning random features satisfy gradient PAC*.

Calicarpa Impossible Security 6 / 32



Our theoretical equivalence yields practical attacks!

Calicarpa Impossible Security 7 / 32



What about neural nets?

� Gradient PAC* does not hold for neural nets.

� But gradient PAC* holds for most last-layer fine-tuning.

� One (minor) challenge is to generate a spanning distribution of embeddings.
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Another equivalence in secure ML

Theorem (El-Mhamdi, Farhadkhani, Guerraoui, Guirguis, H & Rouault (NeurIPS 2021))

C -collaborative learning is equivalent to C-averaging.
Roughly, the guarantee on the norm of the true gradient at termination for collaborative
learning can only be as good as the guarantee we can have when estimating the average of a
set of vectors, assuming that some data source / vector providers are Byzantine.

Averaging is a particular case of learning

Averaging corresponds to losses L(θ|Dn) = ||θ −Dn||22.

From secure ML to secure vector aggregation

Secure vector averaging contains much of the difficulty of secure ML.
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Averaging problem

Averaging problem

Given x1, . . . , xN ∈ Rd , securely compute y close to the true average x̄ .

Differential privacy

With the constraint P[y ∈ S |−→x ] ≤ eεP[y ∈ S |−→x −n] + δ.

Byzantine resilience

Where x̄ is the average of −→x H , for H ⊂ [N].
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Heterogeneity is a (privacy) killer

Denote B(0,∆) the ball of Rd centered on 0, and of radius ∆.

Theorem (Kattis & Nikolov (SoCG 2017))

For any (ε, δ)-differentially private estimator y , there exists −→x ∈ B(0,∆)N for which

E||y − x̄ ||22 ≥ Ω

(
σ(ε, δ)d∆2

N2(log 2d)4

)
, (1)

where σ is a positive and non-increasing function.

Corollary

Assume ∆ = Θ(
√

d). Then E||y − x̄ ||22 ≥ Ω̃(d2/N2).

Corollary (Informal)

If high-accuracy demands d � 109, then it cannot be obtained with differential privacy.
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Heterogeneity is a (security) killer

Denote B(0,∆) the ball of Rd centered on 0, and of radius ∆.

Theorem (Adapted from EFGGHR (NeurIPS 2021))

For any (supposedly Byzantine-resilient) estimator y , there exists −→x ∈ B(0,∆)N and H ⊂ [N]
of cardinal N − F , such that

||y − x̄H ||22 ≥
F 2

(N − F )2
∆2. (2)

Corollary

Assume ∆ = Θ(
√

d) and F = Θ(N). Then ||y − x̄ ||22 ≥ Ω̃(d2).

Corollary (Informal)

If high-accuracy demands d � 109, then it cannot be secured against data poisoning.
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Section 2

The Alarming Practical Implications
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Yet this is used for smart keyboard surveillance!

Figure: Google has already been deploying high-dimensional language models on billions of phones,
without users’ informed consent and without an adequate understanding of privacy & security risks
(extract from an ArXiV paper by Google authors).
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Large-scale lucrative impactful applications are extremely heterogeneous

Figure: ML is now ubiquitous.
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(Hijacked) recommendations are destroying democracies
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And yet our (privacy) math is still flawed!

Personal data (= data associated to a person) is different from sensitive information (=
information that a person would not want to see spread). Especially for language/DNA data.
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And yet our (security) math is still flawed!

Massive amounts of misinformation & hate is shared by (the majority of) authentic persons.
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Google’s scientific disinformation
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Should we trust the central server?
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Check your working hypotheses (and your peers’)

The most widespread dangerously unrealistic assumption in ML

“Assume iid data...”

The most widespread politically biased assumption in ML

“We minimize the data-fitting loss...”
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Section 3

Towards collaborative and secure governance (Tournesol)
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Learning as a voting algorithm
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The “ground truth” myth

The most impactful ML applications
(language, recommendations, ad targeting...)

have no ground truth.
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The “ground truth” myth

The most impactful ML applications
(language, recommendations, ad targeting...)

have no ground truth.

Instead, we should (securely) search for
(scientific and moral) consensus and compromises.
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Sparse voting is extremely vulnerable

ML’s extreme sparsity

If |Dn| � d , then each user provides (extremely) sparse data.

Byzantine vulnerability

Alternatives that no one scored are extremely vulnerable.

Corollary

Under extreme sparsity, median-based recommendation algorithms are extremely dangerous!
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Byzantine resilience revisited

Definition

alg is W -Byzantine resilient if, for any voting rights w ,w ′ ∈ RN
+ and any inputs x ∈ XN ,

|alg(w , x)− alg(w ′, x)| ≤ ||w − w ′||1
W

. (3)

Definition (W -quadratically regularized median)

QrMedW (w , x) , arg min
m∈R

1

2
Wm2 +

∑
n∈[N]

wn|xn −m|

 . (4)

Theorem

For all W > 0, QrMedW is W -Byzantine resilient.
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The French reviewer problem

ML’s extreme sparsity

If |Dn| � d , then each user provides (extremely) sparse data.

The French reviewer problem

Some alternatives may be scored by systematically unsatisfied reviewers.

The Marseillais reviewer problem

Top alternatives may be those scored by users with extreme judgments.

Theorem (Von Neumann - Morgenstern (1944))

VNM utility functions are only defined up to a positive affine transformation.
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Robust sparse voting

Definition (Sparse unanimity, informal)

Assuming that

1. all users actually unanimously agree (up to an affine transformation),

2. all alternatives are scored by sufficiently many users, and

3. all pairs of users have scored sufficiently many alternatives in common,

the vote must output the unanimous preference (up to an affine transformation).

Theorem (Allouah, Guerraoui, Hoang & Villemaud (2022))

For all W > 0, there is an algorithm (called W -Mehestan) that guarantees both sparse
unanimity and W -Byzantine resilience.
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Tournesol
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Secure collaborative governance
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Section 4

Conclusion
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Our scientific integrity is at stake. So is the world’s security.

Figure: Google poisoned the science community, which now amplifies its disinformation
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