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Abstract

In this paper, we study the strategy-proofness properties of the randomized Condorcet voting system
(RCVS). Discovered at several occasions independently, the RCVS is arguably the natural extension
of the Condorcet method to cases where a deterministic Condorcet winner does not exists. Indeed, it
selects the always-existing and essentially unique Condorcet winner of lotteries over alternatives. Our
main result is that, in a certain class of voting systems based on pairwise comparisons of alternatives,
the RCVS is the only one to be Condorcet-proof. By Condorcet-proof, we mean that, when a Condorcet
winner exists, it must be selected and no voter has incentives to misreport his preferences. We also prove
two theorems about group-strategy-proofness. On one hand, we prove that there is no group-strategy-
proof voting system that always selects existing Condorcet winners. On the other hand, we prove that,
when preferences have a one-dimensional structure, the RCVS is group-strategy-proof.
Keywords: Social choice Condorcet winner Strategy-proofness

1 Introduction

Social choice theory consists in choosing an alternative for a group of people whose individual preferences
may greatly differ from one another. One of the first mathematicians to address this question was Condorcet
(1785). Condorcet argued that an alternative that is preferred to any other by the majority should always
be selected. Such an alternative is now known as a Condorcet winner. Unfortunately, Condorcet went on
proving that a Condorcet winner does not necessarily exist, as he provided an example where the majority
prefers x to y, y to z and z to x. This example is now known as a Condorcet paradox. It has been the essence
of several impossibility theorems since. Namely, first, Arrow (1951) famously derived the impossibility of a
”fair” aggregation of the preferences of the individuals into a preference of the group. Second, Gibbard (1973)
and Satterthwaite (1975) proved that there is no strategy-proof, anonymous neutral and deterministic voting
system. A similar result has been proved by Campbell and Kelly (1998) about the impossibility of combining
the Condorcet principle with strategy-proofness for deterministic social choice rules that select one or two
alternatives. Third, Gibbard (1977, 1978) proved that random dictatorship was the only strategy-proof,
anonymous, neutral and unanimous voting system, assuming voters’ preferences satisfy the Von Neumann
and Morgenstern (1944) axioms.

Nevertheless, a natural extension of the concept of Condorcet winner to lotteries has been introduced
and widely studied by Kreweras (1965), Fishburn (1984), Felsenthal and Machover (1992), Laslier (1997),
Laslier (2000), Brandl et al. (2016), and relies on a remarkable existence and near-uniqueness theorem proved
independently by Fisher and Ryan (1992) and Laffond et al. (1993). Namely, it was proved that, provided
there is no tie between any two alternatives, and given a specific but natural extension of majority preferences
over candidates to preferences over lotteries, there always is a unique lottery that the majority likes at least
as much as any other lottery. We call such a lottery the Condorcet winner of lotteries, or the randomized
Condorcet winner. Naturally, it is this randomized Condorcet winner that we propose to select through the
randomized Condorcet voting system (RCVS)1. The compelling naturalness of the RCVS has been further

1This voting system has been given different names in previous papers. These names include ”game-theory method” in
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supported by Brandl et al. (2016) who characterized it as the only voting system satisfying three fairly
natural properties. What is perhaps most exciting is the recent implementation of the RCVS on the website
https://pnyx.dss.in.tum.de. In Section 2, we quickly redefine the RCVS and stress its naturalness.

In addition to this naturalness, the RCVS has been proved to possess appealing Pareto-efficiency prop-
erties2. Indeed, Aziz et al. (2013) proved that random dictatorship and RCVS are two extreme points of
a tradeoff between Pareto-efficiency and strategy-proofness. Loosely, random dictatorship is, in some sense
related to the class of preferences considered3, more strategy-proof but less Pareto-efficient. Moreover, Aziz
et al. (2013, 2014) prove that, to a large extent, strategy-proofness and Pareto-efficiency are incompatible,
which suggests that the RCVS can hardly be improved upon with respect to such considerations.

Unfortunately, the theorem by Gibbard (1977) implies that the RCVS is not strategy-proof for von
Neumann - Morgenstern preferences. The proof of this, along with many similar results, relies on the
concept of first-order stochastic dominance, which allows to capture the whole diversity of von Neumann
- Morgenstern preferences. In particular, the harshness of Gibbard (1977)’s result is precisely due to how
constraining first-order stochastic dominance is. Thus, if we relax this condition, we may be able to prove
the (thus weaker) strategy-proofness of some voting systems that are not random dictatorships. This is what
has been proposed by Bogomolnaia and Moulin (2001) and Balbuzanov (2016), who respectively introduced
ordinal efficiency and convex undomination. In this paper, we shall take another path, by studying a very
distinct (but still fairly natural) class of preferences based on pairwise comparisons of drawn alternatives,
which was previously introduced by Fishburn (1982) and Aziz et al. (2015).

The main contribution of this paper is to show that, for this class of pairwise comparison preferences, the
RCVS possesses enviable strategy-proofness properties. We prove that the RCVS is Condorcet-proof, in the
sense that, when a Condorcet winner exists, the RCVS selects it and no voter has incentives to misreport
his preferences. We shall also show that, in a certain class of voting systems based on pairwise comparisons
of alternatives, the RCVS is the only one that is Condorcet-proof. These properties are formally stated and
derived in Section 3. We shall argue that they are strong indications that the RCVS has key properties that
should favor its use over other voting systems.

Next, in Section 4, we study the group strategy-proofness of voting systems. We start with an impossi-
bility result that asserts that no voting system that selects Condorcet winners is group strategy-proof. Next
and finally, we restrict ourselves to the cases where alternatives range on a one-dimensional axis, which is
mathematically described by two models known as single-peakedness and single-crossing. It is well-known
that, under these models, Condorcet winners are guaranteed to exist (Black (1958); Roberts (1977); Roth-
stein (1990, 1991); Gans and Smart (1996)). While the median social rule introduced by Moulin (1980)
and generalized by Saporiti (2009) guarantees strategy-proofness for one-dimensional preferences, it requires
to explicitly and officially locate alternatives on a one-dimensional line, and to forbid voters’ ballots to be
inconsistent with the assumed corresponding one-dimensional structure of preferences. In many cases, like
in politics, this may not be acceptable. However, Penn et al. (2011) proved that, when preferences are
single-peaked but ballots are not constrained to be single-peaked, a deterministic group-strategy-proof vot-
ing system must be dictatorial. We shall prove that, under single-peakedness or single-crossing preferences,
the RCVS is group-strategy-proof.

Finally, Section 5 concludes by emphatically recommending the use of the RCVS in practice.

Felsenthal and Machover (1992) which is not to be confused with the slightly different game-theory method by Rivest and Shen
(2010), ”symmetric two-party competition game equilibrium” in Laslier (2000); Myerson (1996), ”maximal lottery” in Fishburn
(1984); Aziz et al. (2013); Brandl et al. (2016) and ”Fishburn’s rule” on https://pnyx.dss.in.tum.de. Note that some of these
papers also study variants where the margin by which an alternative x is preferred to y is taken into account (whereas, here,
only the fact that is the majority prefers x matters). Finally, it should be added that the (support of the) RCVS has also been
studied under the names ”bipartisan set” and ”essential set”. We believe, however, that our terminology yields greater insight
into the nature of this lottery.

2A voting system is Pareto-efficiency if there is no lottery x̃ such that everyone likes x̃ at least as much as the selected lottery,
and someone strictly prefers x̃ to the selected lottery.

3There are several possible ways to extend preferences over alternatives to preferences over lotteries, each leading to its own
concepts of strategy-proofness and Pareto-efficiency.
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2 The Randomized Condorcet Voting System

In this section, we briefly reintroduce the RCVS, which was repeatedly discovered in the literature. We
consider a finite set X of alternatives. A preference θ ∈ O is an order4 over X. For simplicity, we shall
restrict our analysis to total order preferences, but there is no difficulty in generalizing our results to partial
orders. We denote θ : x � y the fact that a voter with preference θ prefers alternative x to y. The anonymous
preferences of a population of voters can then be represented as a probability distribution θ̃ ∈ ∆(O) over
preferences. Note that this representation of the preferences of a population does not discriminate certain
distinct settings, e.g. a population and two copies of this population. However, it has the advantage
of modeling as well situations where different voters have different weights, e.g. in a company board of
directors. Now, we say that the majority Mθ̃ prefers x to y if more people prefer x to y, i.e.

Mθ̃ : x� y
4⇐⇒ Pθ∼θ̃ [θ : x � y] > Pθ∼θ̃ [θ : x ≺ y] ,

where Pθ∼θ̃[·] is the probability of an event ”·” regarding a random voter θ drawn from the population θ̃.
For convenience of notation, we use probability notations for quantities often rather regarded as frequencies.
The line above can equivalently be read as the probability that a random voter prefers x to y is greater than
the probability that he prefers y to x, or as the fraction of voters who prefer x to y being greater than the
fraction of voters who prefer y to x.

We shall use the notation ”�” instead of ”�” when the right-hand inequality features the greater-or-
equal sign ”≥”.

Example 1. Consider X = {x, y, z}, and θ̃ ∈ ∆(O) defined by:

Pθ∼θ̃ [θ : x � y � z] = 27/100,

Pθ∼θ̃ [θ : z � x � y] = 31/100,

Pθ∼θ̃ [θ : y � x � z] = 42/100.

We then have Mθ̃ : x� y � z � x, which proves that the majority preference Mθ̃ is not transitive and that
there is no Condorcet winner. This is the infamous Condorcet paradox.

Given the limitations of deterministic voting systems proved by Gibbard (1973), Satterthwaite (1975)
and Penn et al. (2011), we turn our attention to randomized voting systems, which have been gaining
interests in recent years (see, e.g. Ehlers et al. (2002); Bogomolnaia et al. (2005); Chatterji et al. (2014)).
Instead of selecting an alternative, a randomized voting system selects a lottery x̃ ∈ ∆(X), that is, a
probability distribution over alternatives. A crucial difficulty posed by the introduction of randomness in
social choice theory is the extension of preferences over deterministic alternatives to preferences over lotteries.
To introduce and justify the randomized Condorcet voting system, it turns out to be sufficient to extend the
majority preferences. We do this as follows. We say that the majority Mθ̃ prefers a lottery x̃ to a lottery
ỹ, if the majority more often prefers the alternative drawn by x̃ to the one drawn by ỹ, than the other way
around, i.e.

Mθ̃ : x̃� ỹ
4⇐⇒ Px∼x̃,y∼ỹ

[
Mθ̃ : x� y

]
> Px∼x̃,y∼ỹ

[
Mθ̃ : x� y

]
,

where, as earlier, the notation x ∼ x̃ means that we are drawing x from the probability distribution x̃. This
extension of majority preferences to lotteries shares strong similarities with the SSB preferences axiomatized
by Fishburn (1982), and even more with the pairwise comparison preferences studied by Aziz et al. (2014).
We stress, however, that the majority preference Mθ̃ need not be transitive over deterministic alternatives,
which is evidently the essence of the Condorcet paradox. Nevertheless, we argue that this extension of

4An order is a binary relation that satisfies the following properties, for all x, y, z ∈ X:

• Antisymmetry: if θ : x � y and θ : y � x, then x = y.

• Transitivity: if θ : x � y and θ : y � z, then θ : x � z.
If, in addition, the order satisfies totality, i.e. θ : x � y or θ : y � x, then we say that the order is total.
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majority preferences over alternatives to majority preferences over lotteries is fairly natural, especially given
that we assume to only have access to ordinal preferences of the voters.

The definition of majority preferences over lotteries can also be stated in terms of an inequality with
matrices. First, for any preferences θ̃ of the people, let us define the referendum matrix R(θ̃) ∈ RX×X by

Rxy(θ̃) , Pθ∼θ̃ [θ : x � y]− Pθ∼θ̃ [θ : y � x] .

Intuitively, Rxy(θ̃) counts the relative proportion of voters that prefer x over y, and thus, the hypothetical
result of a referendum opposing x to y.

Now, let us define A(Mθ̃) ∈ RX×X the skew-symmetric matrix that only remembers the signs of the
entries of the referendum matrix. In other words, A(Mθ̃) is defined by

Axy(Mθ̃) =

 +1, Mθ̃ : x� y,
−1, Mθ̃ : x� y,
0, otherwise.

Moreover, we can represent any lottery x̃ by a vector p(x̃) ∈ RX defined by px(x̃) = Py∼x̃[x = y]. Then,

Mθ̃ : x̃� ỹ ⇐⇒ p(x̃)TA(Mθ̃)p(ỹ) > 0,

Like earlier, we shall use the symbol ”�” when the right-hand side inequality features the greater-or-equal
sign.

Remark 1. The definition of the majority preferences Mθ̃ over lotteries is not to be confused with the fact
that a random voter will more likely prefer x̃ to ỹ, nor with the fact that a random voter will more likely
prefer a random alternative drawn from x̃ to one drawn from ỹ.

Example 2. Let us reconsider Example 1. Recall that Mθ̃ : x � y � z � x. Consider the lottery p̃ that
assigns probability 2/3 to x and 1/3 to y, which we shall compare to z (or, equivalently, the lottery δz which
assigns probability 1 to z). Then, Pp∼p̃[Mθ̃ : p � z] = Pp∼p̃[p = y] = 1/3, while Pp∼p̃[Mθ̃ : z � p] =
Pp∼p̃[p = x] = 2/3. In other words, two out of three times, the majority will prefer the alternative z to the
one drawn by p̃, while only one third of the times it will prefer the alternative drawn by p̃ to z. Therefore,
the majority prefers z to p̃, i.e. Mθ̃ : z � p̃.

Finally, we can generalize the concept of Condorcet winners of alternatives to Condorcet winners of
lotteries. We say that a lottery x̃ is a randomized Condorcet winner if there is no other lottery that the
majority prefers, i.e. such that

∀ỹ ∈ ∆(X), Mθ̃ : x̃� ỹ.

This definition of the majority preferences over lotteries then allows to circumvent the Condorcet paradox
in a very natural way, which relies on the following restatement of a well-known theorem.

Theorem 1 (Fisher and Ryan (1992); Felsenthal and Machover (1992); Laffond et al. (1993)). There always
exists a randomized Condorcet winner. Plus, if there is no tie between any two alternatives, the randomized
Condorcet winner is unique.

On one hand, the proofs of this theorem are not very constructive nor insightful. For instance, the
existence is derived from the minimax theorem by Von Neumann (1928) or the Nash (1951) theorem. On
the other hand, though, the randomized Condorcet winner can be efficiently computed. Indeed, the set of
randomized Condorcet winners is actually a polytope, whose variables are the probabilities of selecting the
different alternatives, and whose constraints assert that the majority must like the randomized Condorcet
winners at least as much as any deterministic alternative. Thus, a randomized Condorcet winner can be
computed by solving a basic LP with O(|X|) variables and constraints. Naturally, it is this essentially unique
randomized Condorcet winner that we propose to select.
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Definition 1. The randomized Condorcet voting system (RCVS) C : ∆(O)→ ∆(X) selects the randomized
Condorcet winner C (θ̃) of the majority preferences Mθ̃.5.

Note that any deterministic Condorcet winner is a randomized Condorcet winner. Therefore, by the
uniqueness property, if a deterministic Condorcet winner exists, then the RCVS selects it deterministically.
In any case, by construction, the RCVS has the following characteristic property:

∀x̃ ∈ ∆(X), Mθ̃ : C (θ̃)� x̃,

that is, the majority always prefers the randomized Condorcet winner at least as much as any lottery. From
this property, it is immediate that the RCVS satisfies independence of irrelevant alternatives, in the sense
that if an alternative is not in the support of C (θ̃), then removing it from the set of alternatives (which only
implies reducing the set ∆(X)) does not affect the value of lottery C (θ̃).

Example 3. We reconsider Example 1. Recall that Mθ̃ : x� y � z � x, so that there was no deterministic
Condorcet winner. In particular, note that Mθ̃ : c� p if and only if (c, p) ∈ {(x, y), (y, z), (z, x)}. Here, the

randomized Condorcet winner C (θ̃) is the uniform distribution over X. Indeed, let p̃ the lottery that assigns
probabilities px, py and pz to alternatives x, y and z. Then,

Pc∼C (θ̃),p∼p̃
[
Mθ̃ : c� p

]
= P [(c, p) ∈ {(x, y), (y, z), (z, x)}]

= P [(c, p) = (x, y)] + P[(c, p) = (y, z)] + P[(c, p) = (z, x)]

=
py
3

+
pz
3

+
px
3

= P [(c, p) = (z, y)] + P[(c, p) = (x, z)] + P[(c, p) = (y, x)]

= P [(c, p) ∈ {(z, y), (x, z), (y, x)}]
= P

[
Mθ̃ : c� p

]
,

where all the probabilities are obtained by drawing c from C (θ̃) and p from p̃. This proves that the majority
Mθ̃ likes C (θ̃) just as much as p̃. In particular, we have Mθ̃ : C (θ̃) � p̃, for any lottery p̃. This is the
characteristic property of the RCVS.

Example 4. As another example, assume X = {x, y, z1, z2, z3} and Mθ̃ : x � y � zi � x for all i ∈
{1, 2, 3}, and that Mθ̃ : z1 � z2 � z3 � z1. Then the randomized Condorcet winner assigns probability 1/3
to x and y, and probability 1/9 to each zi for i ∈ {1, 2, 3}.

3 Condorcet-Proofness

As claimed in the introduction, the RCVS has appealing strategy-proofness properties. In this section, we
shall prove some of these properties. Namely, we will show that the RCVS is Condorcet-proof, which means
that, when a deterministic Condorcet winner exists, the RCVS selects it and no voter has then incentive to
misreport his preferences. Moreover, we will prove that the RCVS is the only voting system to have this
property in a class of voting systems based on pairwise comparisons. To formalize these properties, we first
introduce the preferences and strategies that the definition of Condorcet-proofness relies on.

3.1 Preferences and Strategies

While our preferences are so far well-defined over X, we need to determine how they extend to pairwise
comparisons of lotteries. There is not a unique way to perform such an extension. In this paper, we do so

5In the case where the randomized Condorcet winner is not unique, a randomized Condorcet winner could be randomly
selected by the RCVS by maximizing a random linear objective function over the polytope of randomized Condorcet winners.
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as follows. We say that a voter with preference θ ∈ O prefers lottery x̃ to ỹ if he is more likely to prefer an
alternative drawn by x̃ to one drawn by ỹ, than the other way around, i.e.

θ : x̃ � ỹ 4⇐⇒ Px∼x̃,y∼ỹ [θ : x � y] ≥ Px∼x̃,y∼ỹ [θ : x ≺ y] .

These preferences are the pairwise comparison extensions introduced by Aziz et al. (2014). They are partic-
ular cases of the SSB preferences axiomatized by Fishburn (1982)6. Note that they are nontransitive7 and
thus do not satisfy the axioms by Von Neumann and Morgenstern (1944). This explains why the Gibbard
(1977) theorem does not apply to our setting. Nevertheless, they can be considered risk-neutral, in the sense
that, if θ : x � y � z, if w̃ is the uniform distribution over {x, y, z} and if w is drawn from w̃, then θ is
equally likely to prefer w over w̃ than the other way around. In practice, voters might be more risk-averse
than that, in which case the RCVS will turn out to be all the more Condorcet-proof.

A helpful feature of such preferences is that they are perfectly determined by their restriction to prefer-
ences over alternatives. In particular, combined to the revelation principle derived by Gibbard (1973), this
implies that, without loss of generality, we can restrict ourselves to the analysis of voting systems whose
ballots are the total orders over X.

Now, in an actual election, the voters have the option of voting any ballot, including those that do not
represent their actual preferences. We capture this by introducing the concept of strategies. Intuitively, a
strategy of the population tells how each voter, given his preferences, will vote. More formally, a strategy s
of the population is a mapping s : O → ∆(O), where s(θ) is the mix of ballots chosen by voters of preference
θ. A more relevant way to interpret this mix of ballots is to regard it as the way the set of voters with
preference θ will spread its votes among the different possible ballots. What is more, we extend the domain
of s to the set ∆(O) by s(θ̃) , E[s(θ̃)], so that s is now a function O → ∆(O). Then, given the preferences
θ̃ of the people, s(θ̃) are the ballots of the people when they follow strategy s.

Now, the strategy s determines a partition of the voters into two subsets Truthful(s) and Manipulator(s)
defined by

Truthful(s) = {θ ∈ O | s(θ) = δθ} ,
Manipulator(s) = {θ ∈ O | s(θ) 6= δθ} ,

where δθ is the Dirac distribution on θ. Finally, the truthful strategy struth is evidently defined by struth(θ) =
δθ for all θ ∈ O. Equivalently, a strategy s is truthful when Truthful(s) = O.

3.2 Condorcet-proofness of the RCVS

We can now define formally what we mean by Condorcet-proofness. Recall that a voting system V inputs
the ballots of the population ã ∈ ∆(O) and outputs a lottery V (ã) ∈ ∆(X). When the population with
preferences θ̃ is truthful, the ballots are ã = θ̃. When the population plays strategy s, its ballots are ã = s(θ̃).

Definition 2. A voting system V : ∆(O) → ∆(X) is Condorcet-proof if, whenever preferences θ̃ of the
people yield a deterministic Condorcet winner x, the voting system V selects x and there is no preference θ
such that individuals with preference θ have incentives to misreport their preferences altogether, i.e.

∀θ̃,
(
∃x, ∀y,Mθ̃ : x� y

)
=⇒

{
V (θ̃) = δx,

Manipulator(s) = {θ} ⇒ θ : V (s(θ̃)) � V (θ̃).

In other words, a Condorcet-proof voting system is a Condorcet method that prevents manipulations when
a deterministic Condorcet winner exists. Therefore, Condorcet-proofness does not entirely include strategy-
proofness. It only includes strategy-proofness for certain population preferences θ̃. Note, in addition, that this

6A preference θ over lotteries is SSB if there exists a skew-symmetric matrix φ(θ) ∈ RX×X such that θ : x̃ � ỹ if and only
if p(x̃)Tφ(θ)p(ỹ) > 0, where p(x̃) ∈ RX is the vector of the probabilities of the lottery x̃. In our case, φxy(θ) , 1 if θ : x � y,
and −1 otherwise.

7See, e.g. Grime (2010), for examples on such nontransitivity.
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strategy-proofness is slightly stronger than the more usual dominant-strategy-proofness from the literature.
Indeed, here, we allow for more than one voter to deviate from truthfulness. However, we do require is that
all the voters that do deviate from truthfulness have the same preference. Thus, Condorcet-proofness can
be regarded as a weaker version of the stronger group-Condorcet-proofness we shall discuss later on, which
imposes no restriction on the set of manipulators.

The following key theorem has been sketched by Peyre (2012c) in a popularization article. Here, we
provide a rigorous proof.

Theorem 2 (Peyre (2012c)). The RCVS is Condorcet-proof.

First note that, as we already said it earlier, the RCVS does select deterministic Condorcet winners
whenever they exist. Therefore, all we need to prove is the strategy-proofness part. Now, we prove an
insightful lemma. Loosely, it says that, when misreporting their preferences, manipulators can only switch
pairwise majority preferences that they agree with.

Lemma 1. Assume Manipulator(s) = {θ} and Mθ̃ : x� y. The two following implications hold:

• If θ : y � x, then Ms(θ̃) : x� y.

• If Ms(θ̃) : y � x, then θ : x � y.

Proof. Let us prove the first implication. We assume θ : y � x. Then, the manipulator θ cannot increase
the number of ballots that favor y to x. Indeed,

Pa∼s(θ̃) [a : y � x] = Eθ̂∼θ̃
[
Pa∼s(θ̂) [a : y � x]

]
= Eθ̂∼θ̃

[
Pa∼s(θ̂) [a : y � x]

∣∣∣ θ̂ 6= θ
]
Pθ̂∼θ̃

[
θ̂ 6= θ

]
+ Pa∼s(θ) [a : y � x]Pθ̂∼θ̃

[
θ̂ = θ

]
≤
∑
a:y�x
a6=θ

Pθ̂∼θ̃
[
θ̂ = a

]
+ Pθ̂∼θ̃

[
θ̂ = θ

]

= Pθ̂∼θ̃
[
θ̂ : y � x

]
,

where we used the fact that s(θ̂) = δθ̂ for θ̂ 6= θ, and that Pa∼s(θ) [a : y � x] ≤ 1. A similar computation

shows that Pa∼s(θ̃) [a : x � y] ≥ Pθ̂∼θ̃
[
θ̂ : x � y

]
. Thus,

Mθ̃ : x� y ⇐⇒ Pθ̂∼θ̃
[
θ̂ : x � y

]
> Pθ̂∼θ̃

[
θ̂ : y � x

]
=⇒ Pa∼s(θ̃) [a : x � y] > Pa∼s(θ̃) [a : y � x]

⇐⇒ Ms(θ̃) : x� y,

which is the first implication of the lemma. The second implication is essentially the contraposition, using
in addition the fact that if Mθ̃ : x� y implies that x 6= y, and thus, if θ : x � y, then θ : x � y.

We can now prove the theorem.

Theorem 2. Assume that the preferences θ̃ of the people yield a Condorcet winner x ∈ X and that Manipulator(s) =
{θ}. Using the fundamental property of the RCVS for s(θ̃) and the previous lemma, we have

Ms(θ̃) : C (s(θ̃))� x

⇐⇒ Py∼C (s(θ̃))

[
Ms(θ̃) : y � x

]
≥ Py∼C (s(θ̃))

[
Ms(θ̃) : x� y

]
=⇒ Py∼C (s(θ̃)) [θ : x � y] ≥ Py∼C (s(θ̃)) [θ : y � x]

⇐⇒ θ : x � C (s(θ̃)),
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which proves that the manipulator θ does not gain by misreporting his preferences.

3.3 Near-Uniqueness

Condorcet-proofness is a very restrictive property, and it is a remarkable fact that the RCVS satisfies it.
Indeed, in this section, we shall prove that any Condorcet-proof tournament-based8 voting system must
agree with the RCVS for a wide range of inputs. To do so, we first defined what a tournament-based voting
system is. Recall that the referendum matrix measured the margins by which any alternative is preferred to
any other alternative, while the skew-symmetric matrix A(Mθ̃) computes the signs of the referendum matrix.

Definition 3. A pairwise (respectively, tournament-based) voting system is a voting system whose outcome
is entirely determined by the referendum matrix (respectively, by the signs of the entries of the referendum
matrix).

Moreover, let us define the `1-norm of the referendum matrix by

||R(θ̃)||1 ,
∑
x,y∈X

|Rxy(θ̃)|.

We can now state the uniqueness result.

Theorem 3. A Condorcet-proof pairwise voting system must agree with the RCVS for all preferences θ̃
of the people such that ||R(θ̃)||1 < 2 and Rxy(θ̃) 6= 0 for all x 6= y. In particular, the RCVS is the only
Condorcet-proof tournament-based voting system.

Proof. The proof is given in Appendix A.

While the theorem indicates a sort of uniqueness of Condorcet-proof voting systems, at least in a neigh-
borhood of the uniform distribution, I have not succeeded in characterizing these Condorcet-proof voting
systems. I suspect them not to be unique though. My intuition is that some referendum matrices R are so
extreme that only a few ballots ã that could have led to them, in which case strategy-proofness may not be
restrictive enough to impose the uniqueness of the choice of V (ã).

Two intuitive remarks can be added though to hint at the fact that this theorem encompasses more cases
than it seems to. First, ballots that almost yield deterministic Condorcet winners are intuitively those that
could likely have been results of manipulations without which a deterministic Condorcet winner existed.
Therefore, quite likely, it will be necessary to impose many constraints on the outcomes of these ballots to
prevent possible manipulations. This suggests that Condorcet-proofness imposes the winning lottery for such
ballots to be at least quite similar to the randomized Condorcet winner. Second, if we add the constraint
that the voting system must satisfy independence of irrelevant alternatives, then there will likely be only a
handful of alternatives that actually matter. This means that Condorcet-proofness must apply to a small
induced graph, for which the assumptions of Theorem 3 are more likely to apply.

To illustrate the rareness of Condorcet-proof voting systems, let us present an example of a Condorcet
method which fails to be Condorcet-proof.

Example 5. In the last decades, Schulze (2011) introduced a seductive deterministic voting system based on
weighted tournaments. Weighted tournaments can be represented as weighted directed graphs whose nodes
are alternatives. We then draw an arcs from x to y, if the majority prefers x to y, and we assign a weight to
the arc proportional to Rxy(θ̃). Note that a deterministic Condorcet winner in this setting is a node with no
incoming arc. When there is such a node, Schulze proposes to select this node. This means that the Schulze
method is a Condorcet method. When no deterministic Condorcet winner exists, however, Schulze proposes
to remove the arcs of the weighted tournament which have the smallest weights until the tournament yields
a Condorcet winner.

8The terminology of tournaments is widely used in social choice theory, e.g. see Laslier (1997). It corresponds to a (sometimes
weighted) directed graph whose nodes are alternatives, and with an arc from x to y if the majority prefers x to y. Equivalently,
the graph can be represented by the referendum matrix we use here.
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Unfortunately, the Schulze method fails to be strategy-proof even when a deterministic Condorcet winner
exists, and even in the simplified setting where preferences assumed both single-crossing and single-peaked9.
To see this, consider x < y < z three alternatives and preferences defined by

θ1 : x � y � z, θ2 : y � x � z, θ3 : y � z � x, θ4 : z � y � x. (1)

Consider 15 voters whose preferences θ̃ ∈ ∆(O) are

15 θ̃ = 7θ1 + 3θ2 + 3θ3 + 2θ4. (2)

Given these preferences, y is the Condorcet winner of θ̃, and the one that the Schulze method selects. But
now consider that manipulators θ1 choose ballot s(θ1) = δa, where a : x � z � y, and that other voters are
truthful (i.e. Manipulator(s) = {θ1}). Then,

15 s(θ̃) = 7a+ 3θ2 + 3θ3 + 2θ4. (3)

We now have a Condorcet paradox Ms(θ̃) : y � x� z � y. This is illustrated in Figure 1.

Figure 1: On the left is the tournament of the preferences, where y is Condorcet winner. The arrow from y
to x corresponds to the majority preference Mθ̃ : y � x. On the right is the tournament of the ballots, for
which the Schulze method elects x. Weights are the surplus of voters that prefer one alternative to another.

At this point, the Schulze method consists in removing the arc with the lowest weight, which is the arc
from y to x. This leaves x with no incoming arc, leading to the election of x. Since manipulators θ1 indeed
prefer x to y, they benefit from conspiring, which proves that the Schulze method is not strategy-proof even
highly structured preferences.

4 Group-Condorcet-Proofness

Strategy-proofness as defined so far is restricted to a class of single-minded voters deviating from truthfulness.
A stronger form of strategy-proofness may be desirable in settings where voters can easily communicate and
plot more complex group strategies. This leads us to the concept of group strategy-proofness, which has for
instance been studied in Saporiti (2009) and Penn et al. (2011).

Definition 4. A voting system V : ∆(O) → ∆(X) is group-Condorcet-proof if, whenever preferences θ̃
of the people yield a Condorcet winner x, the voting system V selects x and no subset of voters has strict
incentives to collectively misreport their preferences, i.e. for all such θ̃, we have V (θ̃) = δx and

∀s 6= struth,∃θ ∈ Manipulator(s), θ : V (s(θ̃)) � V (θ̃).

Group strategy-proofness is sometimes regarded as too strong a requirement. One contribution of this
paper is to back this intuition, with the following impossibility theorem.

Theorem 4. There is no group-Condorcet-proof voting system.

9We give definitions to single-crossing and single-peakedness later on.
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Proof. The proof only requires 4 alternatives and 7 voters, among whom only 2 need to be assumed to be
manipulators. Let X = {w, x, y, z} and the ballots:

a1 : x � y � z � w, a2 : z � x � y � w, (4)

a3 : x � w � y � z, a4 : y � w � z � x, a5 : z � w � x � y. (5)

We define the ballots of the people by

7ã = a1 + a2 + a3 + 2a4 + 2a5,

which means that 1 out of the 7 voters voted a1, 1 voted a2, and so on.
The weighted tournament of the ballots is depicted in Figure 1, where weights have to be divided by 7,

along with the referendum matrix R(ã).

7R(ã) =


0 1 −1 −1
−1 0 3 −3
1 −3 0 1
1 3 −1 0



Table 1: Pairwise comparisons of ballots ã.

Let V be a group-Condorcet-proof voting system. We will show that, for any choice of V (ã) ∈ ∆(X),
the ballots ã could have been produced by manipulators who had incentives to misreport their preferences,
even when there was a Condorcet winner for the preferences. This will show that V cannot exist. To do so,
let us denote pv = Pv̂∼V (ã)[v̂ = v] for all v ∈ X.

Now, consider θy : z � w � y � x, and the preferences θ̃y ∈ ∆(O) of the people defined by

7θ̃y = a1 + a2 + a3 + 2a4 + 2θy.

In other words, we are investigating the case where the two θy voters were manipulators and voted a5 instead

of θy. We have 7Ryx(θ̃y) = 1 > 0, yielding Mθ̃y
: y � x. Plus, like for Mã, we have Mθ̃y

: y � z and

Mθ̃y
: y � w. Thus, y is Condorcet winner of θ̃y. To make sure that the two θy did not have incentives to

conspire, we must have θy : V (ã) � y. This means that pw + pz ≤ px.
We then investigate a similar manipulation by θz : x � w � z � y when the preferences of the people are

θ̃z defined by
7θ̃z = a1 + a2 + θz + 2a4 + 2a5.

Similarly to above, we verify that z is the Condorcet winner of θ̃z. Strategy-proofness then implies that
pw + px ≤ py.

Now consider θx : y � x � w � z and θ̃x defined by

7θ̃x = a1 + a2 + a3 + 2θx + 2a5.

Alternative x is the Condorcet winner of θ̃x, implying py ≤ pw + pz.
Before going further, let us find out the implication of the three inequalities we have seen so far. Using

successively the second, third and first inequalities yields:

pw + px ≤ py ≤ pw + pz ≤ px.
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This leads to pw ≤ 0, and, since probabilities are non-negative, pw = 0. It then follows that px = py = pz =
1/3. This determines uniquely the lottery that V (ã) must be to guarantee individual Condorcet-proofness.
Interestingly, this is precisely the lottery prescribed by the RCVS.

However, we can show that this lottery is not compatible with group-Condorcet-proofness. Indeed,
consider θ1w : x � y � w � z and θ2w : z � x � w � y and θ̃w defined by

7θ̃w = θ1w + θ2w + a3 + 2a4 + 2a5.

Now, w is the Condorcet winner of θ̃w. But since we have 2/3 = px + py > pz = 1/3 and 2/3 = px + pz >
py = 1/3, both manipulators θ1w and θ2w had incentives to conspire. Thus V is not group-Condorcet-proof,
which proves the theorem.

4.1 Median Voter

In practice, many social choice settings yield a natural one-dimensional structure, e.g. in politics. This means
that alternatives can be located on a one-dimensional line, and that the preferences of voters are somehow
consistent with the way alternatives are located on the line. The one-dimensionality of alternatives can be
represented by a total order relation on X, where x < y means that x is ”on the left” of y. However, in
the literature, we find two distinct definitions of the consistency of preferences with respect to the left-right
structure of alternatives.

Definition 5. The set OSP of single-peaked preferences is the set of preferences θ such that, denoting x∗(θ)
the favorite alternative of θ, we have

(y < x < x∗(θ) or x∗(θ) < x < y) =⇒ θ : x � y,

for any two alternatives x and y.
A set OSC of preferences is single-crossing if there is an order relation ”<” on OSC such that, whenever

x1 < x2 and θ1 < θ2, we have(
θ1 : x2 � x1 ⇒ θ2 : x2 � x1

)
and

(
θ2 : x1 � x2 ⇒ θ1 : x1 � x2

)
.

These two definitions are incompatible, in the sense that there are single-crossing sets of preferences that
do not satisfy single-peakedness, and the set of single-peaked preferences is not single-crossing. However,
under any of these two assumptions, we can define the concept of a median voter10. The well-known median
voter theorem then holds.

Theorem 5 (Black (1958); Dummett and Farquharson (1961); Roberts (1977); Rothstein (1990, 1991);
Gans and Smart (1996)). If preferences are single-peaked or single-crossing and yield a median voter, then
the median voter’s favorite alternative is the Condorcet winner.

Note that Black (1958) proved that this allows a majority of the people to secure the selection of the
Condorcet winner. In other words, if the majority agrees to select the Condorcet winner, no one outside
the majority can modify the outcome. This property is called stability. Dummett and Farquharson (1961)
showed that it still held even if we slightly weaken the single-peakedness assumption. However, stability
is weaker than strategy-proofness, which requires that no one, within the majority or not, can manipulate
the vote to obtain a better alternative. As pointed out by Penn et al. (2011), the apparent simplicity of
the theorem above vanishes as we involve strategy-proofness. Indeed, Penn et al. (2011) proved that a
deterministic group-strategy-proof voting system must be dictatorial even when preferences are assumed
single-peaked.

Now, Moulin (1980) did propose a strategy-proof voting system for single-peaked preferences called the
median rule, and Saporiti (2009) did prove the group-strategy-proofness for single-crossing preferences of a

10In the case of single-peakedness, the median voter is ill-defined, but the favorite alternative of the median voter is well-
defined, by considering the partial order on voters derived by the left-right order between their favorite alternatives.

11



variant of the median rule. However, to do so, alternatives must officially and unambiguously be located
on the left-right line, and voters must be forbidden from voting ballots that are inconsistent with this left-
right line. In fact, the mere concept of the median voter requires assuming that everyone agrees on how
alternatives range on the left-right line. In many cases, e.g. politics, even when alternatives and preferences
mostly have some hidden left-right structure, alternatives may refuse to be located on this left-right line,
and voters may refuse to be forbidden from casting non-single-crossing or non-single-peaked ballots.

Formally, this would require to define a voting system V : ∆(Θ) → ∆(X), even though we believe or
know the support of θ̃ to be restricted to OSP or some OSC . In particular, manipulations may still produce
ballots s(θ̃) whose support is not limited to OSP or some OSC , in which case a decision V (s(θ̃)) still needs
to be made.

This subtle difficulty to design strategy-proof voting systems even under one-dimensional preferences
renders methods by Moulin (1980) and Saporiti (2009) inapplicable in our setting. Meanwhile, we have seen
in Example 5 that the Schulze method fails to be strategy-proof even when preferences are both single-peaked
and single-crossing. This makes the following result all the more remarkable.

Theorem 6. When the support of the preferences θ̃ is single-peaked or single-crossing, the RCVS is group
Condorcet-proof.

The proof is given in Appendix B.

5 Conclusion

In this paper, we have unveiled some remarkable strategy-proof properties of the RCVS. Namely, we have
proved the RCVS is Condorcet-proof, and that, in a large class of voting systems, it is the only one to be
Condorcet-proof. Moreover, when preferences are one-dimensionsal, it is even group-Condorcet-proof. We
have shown this to be a remarkable property by proving that, in the general case, there is no group-Condorcet-
proof voting system. Given that, in addition, the RCVS is a natural and easily computable extension of
Condorcet’s ideas, it is tempting to assume that, considering Condorcet’ philosophical take on social choice
theory, his wide use of probability theory in diverse problems, and his concern of strategy-proofness, ”he
would have endorsed [the RCVS] enthusiastically”, as already noted by Felsenthal and Machover (1992). For
these reasons, we end this paper by emphatically advocating its use in practice.
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A Proof of Theorem 3

First, we notice that ∆(O) can be regarded as the simplex of RO, and that the map R : ∆(O)→ RX×X can
be uniquely extended to a linear map R : RO → RX×X . This linear map has the two following properties.

Lemma 2. The image of R coincides with the space of skew-symmetric matrices11.

Proof. It is straightforward to see that the image of R is included in the space of skew-symmetric matrices.
Reciprocally, to show the equality, we need only show that any element of the canonical basis of skew-
symmetric matrices is in the image of referendum. Such an element R ∈ RX×X is of the form Rxy = −Ryx = 1
for some two different alternatives x, y ∈ X, and Rvw = 0 in any other case. Denote v1, . . . , vn the other
alternatives. We define θ̃ ∈ RO by θ̃ = (θ1 + θ2)/2, where

θ1 : x � y � v1 � . . . � vn and θ2 : vn � . . . � v1 � x � y.

We then have Rvw(θ̃) = 0 if (v, w) /∈ {(x, y), (y, x)} and Rxy(θ̃) = −Ryx(θ̃) = 1, which proves that

R = R(θ̃).

Lemma 3. R(∆(O)) contains all skew-symmetric matrices of `1-norm at most 2.

Proof. In the proof of Lemma 2, we showed that each element of the canonical basis is the image R(θ̃) of
some preferences θ̃ ∈ ∆(O) of the people. Yet, such elements of the canonical basis are of `1-norm 2. Since
R is linear and ∆(O) convex, R(∆(O)) therefore contains all convex combinations of the elements of the
canonical basis of skew-symmetric matrices. Plus, since, for any two distinct matrices of the canonical basis,
the norm of the sum is the sum of the norms, all skew-symmetric matrices of `1-norm 2 are images by R of
some preferences of ∆(O). Plus, the uniform distribution ũ ∈ ∆(O) on all ballots is trivially in the kernel
of R. A convex combination involving ũ then enables to obtain any skew-symmetric matrix of `1-norm at
most 2.

We still need another lemma before proving the theorem.

Lemma 4. Let the preferences θ̃ ∈ ∆(O), the ballots ã ∈ ∆(O) and a subset C ⊂ O of manipulators. Then,
there exists a strategy s ∈ S such that s(θ̃) = ã and Manipulator(s) = C if and only if Pθ̃[D] ≤ Pã[D] for all

subsets D ⊂ O − C. In particular, if X is finite, this condition amounts to Pθ̃(θ̃ = a) ≤ Pã(ã = a) for all
a /∈ C.

Proof. First notice that θ̃ could have produced ã with a set C of manipulators if and only if there exists a
strategy s such that Manipulator(s) = C and s(θ̃) = ã. Consider that we indeed have s(θ̃) = ã, and let us
prove the direct implication of the lemma. Let D ⊂ O − C. Then,

Pã[D] = Eθ̃
[
Ps(θ̃)[D]

]
= Eθ̃

[
Ps(θ̃)[D]

∣∣∣θ̃ ∈ D]Pθ̃[D] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ /∈ D]Pθ̃[O −D].

But since D ∩ C = ∅, for all θ ∈ D, we have θ /∈ C. Thus, s(θ) = struth(θ) = δθ. Thus, Ps(θ)[D] = 1. Thus,
the expression above simplifies to

Pã[D] = Pθ̃[D] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ /∈ D]Pθ̃[O −D].

Therefore, Pã[D] ≥ Pθ̃[D], hence proving the direct implication.

Reciprocally, if Pθ̃[C] = 0, then the inequality Pθ̃[D] ≥ Pã[D] implies θ̃ = ã. Thus, struth(θ̃) = ã, which

proves that θ̃ could have produced ã with the set C of manipulators. Otherwise, Pθ̃[C] 6= 0. We define
s : C → ∆(O) by Ps(θ)[C − {θ}] = 0,

1. ∀E ⊂ C,Ps(θ)[E ] = Pã[E ]/Pθ̃[C].
11A skew-symmetric matrix R is a matrix whose transposition RT equals its opposite −R, i.e. RT = −R
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2. ∀D ⊂ O − C,Ps(θ)[D] =
(
Pã[D]− Pθ̃[D]

)
/Pθ̃[C].

Assuming Pθ̃[D] ≤ Pã[D] for all supsets D ⊃ O−C, the probabilities we have defined here are all non-negative.
It is straightforward to see that the additivity of the probability is satisfied. Plus,

Pθ̃[O] = Pθ̃[C] + Pθ̃[O − C) =
Pã[C]
Pθ̃[C]

+
Pã[O − C)− Pθ̃[O − C]

Pθ̃[C]
= 1.

Therefore, s(θ) is a well-defined probability, and s a well-defined strategy of support C. Plus, for D ⊂ O−C,

Ps(θ̃)[D] = Pθ̃[D] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ ∈ C]Pθ̃[C] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ /∈ C ∪ D]Pθ̃[O − C ∪ D]

= Pθ̃[D] +
Pã[D]− Pθ̃[D]

Pθ̃[C]
Pθ̃[C] = Pã[D],

and, similarly for any E ⊂ C, we have

Ps(θ̃)[E ] = Eθ̃
[
Ps(θ̃)[E ]

∣∣∣θ̃ ∈ C]Pθ̃[C] =
Pã[E ]

Pθ̃[C]
Pθ̃[C] = Pã[E ].

These two equalities prove that s(θ̃) = ã, which is what we had to prove.

We can now prove Theorem 3.

Theorem 3. By contradiction, assume that V disagrees with the RCVS C for some referendum matrix R of
`1-norm less than 2. Let us consider ballots a+vw, a

−
vw ∈ O defined by

a+vw : v � w � x1 � . . . � xn and a−vw : xn � . . . � x1 � v � w.

Like in the proof of Lemma 2, the choices of x1, . . . , xn are irrelevant. What matters to us is the fact that
R(a+vw + a−vw) is a skew-symmetric matrix of the canonical basis. In particular, the referendum matrix R
that the pairwise voting system is based on can be obtained from the ballots ã defined by

ã =
1

2

∑
v,w:Rvw>0

Rvwa
+
vw +

1

2

∑
v,w:Rvw>0

Rvwa
−
vw + δũ,

where δ = 1− 1
2 ||R||1. By assumption on R, we have δ > 0.

Since, by assumption, Rxy 6= 0 for all x 6= y, the ballots ã yields a unique randomized Condorcet winner.
Therefore, the fact that V disagrees with C on R implies that V (ã) is not the randomized Condorcet winner
of ã. In other words, there must be some alternative x ∈ X that the majority Mã strictly prefers to V(ã).
Denoting Z = {z1, . . . , zn} and Y = {y1, . . . , ym} the sets of alternatives that the majority Mã respectively
prefers x to (Mã : x� z) and prefers to x (Mã : y � x), this means that PV (ã) [Z] > PV (ã) [Y ]. Evidently,
by definitions of sets Y and Z, we have Ryx > 0 and Rxz > 0 for all y ∈ Y and z ∈ Z.

We then define the preference θ ∈ O of manipulators by

θ : z1 � . . . � zn � x � y1 � . . . � ym.

Notice that we have θ : V (ã) � x. We can now define the preferences θ̃ ∈ ∆(O) of the people by

θ̃ =
1

2

∑
Mã:v�w

(v,w)/∈Y×{x}

Rvw(a+vw + a−vw) +
1

2

∑
y∈Y

Ryxa
+
yx +

ε+
1

2

∑
y∈Y

Ryx

 θ + (δ − ε)ũ,
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with 0 < ε < δ. Importantly, any ballot a ∈ O except θ is more frequent in ã than in θ̃. Thus, by Lemma 4,
manipulators θ can have produced the ballots ã. Moreover, we have:

∀z ∈ Z, Rxz(θ̃) = Rxz+
1

2

∑
y∈Y

Ryx −ε− 1

2

∑
y∈Y

Ryx = Rxz −ε,

∀y ∈ Y, Rxy(θ̃) = −1

2

∑
y∈Y

Ryx +ε+
1

2

∑
y∈Y

Ryx = +ε.

Recall that Rxz > 0 for all z ∈ Z, hence we can choose ε smaller than all Rxz. By doing so, we guarantee
that Rxz(θ̃) and Rxy(θ̃) are positive for all z ∈ Z and y ∈ Y . Thus, x is a Condorcet winner for θ̃. Yet, by
creating ballots ã, manipulators θ have obtained strictly better, as we have seen that θ : V (ã) � x. This
shows that V is not Condorcet-proof. This proves that a Condorcet-proof pairwise voting system must agree
with the RCVS whenever ||R(θ̃)||1 < 2.

The uniqueness of Condorcet-proof tournament-based voting system is then immediately derived by
considering any skew-symmetric matrix R0, and by dividing each entry by the `1-norm of the matrix, hence
yielding a skew-symmetric matrix R of norm 1 to which the previous part applies.

B Proof of Theorem 5

We first prove the following lemma about the structure of the set of manipulators when preferences are
one-dimensional.

Lemma 5. When preferences are single-peaked or single-crossing with a unique median voter, manipulators
must either be all strictly on the left or all strictly on the right of the median voter.

Proof. Let V a voting system. Denote x the Condorcet winner of the single-peaked preferences θ̃ ∈ ∆(O).
Denote Z and Y the sets of alternatives that are respectively on the left and on the right of x. Now, consider
a strategy s. We denote s(θ̃) = ã. The strict incentive to conspire means that

∀θ ∈ Manipulator(s), θ : V (ã) � x.

If preferences are single-peaked or single-crossing and θ ∈ Manipulator(s) is on the right of the median voter,
we know that θ : x � z for all z ∈ Z. Indeed, if preferences are single-peaked, this is due to θ’s ideal point
being on the right of x. And if preferences are single-crossing, this is because x cannot be switched with a
left alternative as we look preferences on the right of the median voter. Since the median voter ranked x
better than any z ∈ Z, all voters on its right must do so too.

Thus, {z ∈ X | θ : x � z} ⊃ Z, and, as a result, {y ∈ X ‖ θ : y � x} ⊂ Y . Therefore,

0 < Pv∼V (ã) [θ : v � x]− Pv∼V (ã) [θ : v ≺ x] ≤ PV (ã)[Y ]− PV (ã)[Z].

Therefore, we have PV (ã)[Y ] > PV (ã)[Z]. But if θ ∈ Manipulator(s) is on the left of the median voter, we must
have the opposite inequality. Both cases cannot occur simultaneously, which proves that all manipulators
must be on the same side of the left-right spectrum with regards to the median voter. This proves the
lemma.

We can now prove Theorem 5. The proof slightly differs depending on the assumption of one-dimensionality
of preferences that is considered. For clarity, we write the proofs of the two cases in separate blocks.

Theorem 5 for single-peakedness preferences. Let C denote the randomized Condorcet voting system. We
use the same notations x, θ̃, Y, Z, s and ã as in the proof of Lemma 5. Without loss of generality, we can
assume that manipulators are all strictly on the right of the median voter.

Let z ∈ Z. As we have seen in the previous proof, we have θ : x � z for all θ ∈ Manipulator(s). Since
manipulators agree with Mθ̃ : x � z for z ∈ Z, according to Lemma 1, they cannot invert these pairwise
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comparisons. Therefore, Mã : x� z. Yet, for manipulators to gain by conspiring, C (ã) must differ from x,
which means that there must be some y ∈ Y such that Mã : y � x. Let y∗ the most leftist alternative that
the majority of ballots prefers to x, i.e.

y∗ = min{y ∈ Y |Mã : y � x},

where the minimum corresponds to the order relation ”<” on alternatives. We denote Y− , {y− ∈ Y | x <
y− < y∗} and Y+ , Y − Y− = {y+ ∈ Y | y∗ ≤ y+}.

Since x is Condorcet winner of θ̃, we know that Mθ̃ : x � y∗. Thus, manipulators must have inverted
the majority preference of x over y∗. Since, according to Lemma 1, manipulators can only invert arcs they
agree with, this means that there must be a manipulator θ ∈ Manipulator(s) who agrees with Mθ̃ : x � y∗.
This manipulator thus thinks θ : x � y∗. We will show that assuming that he had incentive to conspire leads
to a contradiction.

On one hand, by definition of y∗, we have Mã : x� y for all y ∈ Y−, i.e.

Y− ⊂
{
w ∈ X |Mã : x� w

}
and {w ∈ X |Mã : w � x} ⊂ Z ∪ Y+.

Combining this with the property Mã : C (ã) � x satisfied by the randomized Condorcet voting system
yields

PC (ã)[Y−] ≤ Pw∼C (ã) [Mã : x� w]

≤ Pw∼C (ã) [Mã : w � x]

≤ PC (ã) [Z ∪ Y+] .

On the other hand, strict incentives to conspire for θ imply that

Pw∼C (ã) [θ : w � x] > Pw∼C (ã) [θ : x � w] .

Since θ : x � y∗, we know that the ideal point of θ is necessarily on the left of y∗. As a result, for y ∈ Y+,
we have θ : x � y∗ � y. Therefore,{

w ∈ X | θ : x � w
}
⊃ Z ∪ Y+ and Y− ⊃

{
w ∈ X | θ : w � x

}
,

which leads to PC (ã)[Y−] > PC (ã) [Z ∪ Y+]. This contradicts equation (??), and proves the theorem for
single-peaked preferences.

Theorem 5 for single-crossing preferences. We reuse the same notations x, θ̃, Y, Z, s and ã as in the proof
of Lemma 5. Let θm the median voter. Lemma 5 allows us to assume without loss of generality that the
manipulators are all on the right of θm, i.e. θ > θm for all θ ∈ Manipulator(s). Then, we have, once again,
Mã : x� z for all z ∈ Z.

Let now θ = min Manipulator(s) the most leftist manipulator. Denote Y + and Y − defined by

Y + = {y ∈ Y | θ : y � x} and Y − = {y ∈ Y | θ : x � y}.

Contrary to the proof for single-peakedness, Y + now corresponds to the alternatives some manipulators
prefer to x, as the sign ” + ” now refers to θ’s preference rather than the left-right line of alternatives.

Let y+ ∈ Y +. Since for any θ′ ∈ Manipulator(s), we have θ < θ′, single-crossing implies that θ′ : y+ � x.
Therefore, manipulators all disagree with the majority preference Mθ̃ : x � y+, and hence, by Lemma 5,
cannot invert it. Therefore, Mã : x� y+. Since this holds for all y+ ∈ Y +, we have

Y + ⊂ {w ∈ X |Mã : x� w} and {w ∈ X |Mã : w � x} ⊂ Z ∪ Y −.

Yet, the fundamental property of the RCVS applied to x then implies

PC (ã)[Y
+] ≤ Pw∼C (ã) [Mã : x� w]

≤ Pw∼C (ã) [Mã : w � x]

≤ PC (ã)

[
Z ∪ Y −

]
.
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But this contradicts the strict incentives for θ to conspire, i.e. PC (ã)[Y
+] > PC (ã) [Z ∪ Y −]. Thus, we reach

the same conclusion for single-crossing preferences as we did for single-peaked ones.
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