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Preface

This thesis is the report of a 3-month research project required for the engineering degree of the Ecole Polytechnique
of France. The work was conducted in the University of Auckland during the period from April 2010 to July 2010 in
the Engineering Science Department, in the field of mathematics applied to electricity optimization.

The project deals with the analysis of a market design of the New Zealand electricity market. The use of game
theory and other mathematical tools enables a sophisticated criticism. The purpose of my research is to show how the
market design can lead to strategic behaviours, which can produce instability, inefficiency and market power.

Because the design is recent and confidential, there is not a lot of litterature concerning this specific project. However,
game problems in electricity markets are burning issues, as most countries have a very recently liberalized electricity
market. In particular, the European electricity market is a hot topic right now. Several mathematical tools have been
created to study these markets, and some of them have been used in this paper too.

During this internship, I had quite a lot of liberty. I had the opportunity to take plenty of initiatives. However, I also
had the support of my supervisor, Dr. Andy Philpott, who has oriented me all along, and given me the mathematical
tools that was required for the completion of my research project.

I wish to express my sincere thanks to Dr. Andy Philpott, for his ever encouraging support, his remarks during our
discussions and his advices in the redaction of this report. With his help, not only have I learnt a lot about electricity
market and game theory during this period, but I have also had the chance to discover the inside of a research unit in
a very international environment.

I would also like to thank him and Dr. Frédéric Bonnans, my supervisor at the Ecole Polytechnique, for giving me
the opportunity to complete this internship in the amazing country that New Zealand is. In addition, I acknowledge
the support of the chair Optimization for Sustainable Development between Microsoft France, Microsoft Research, the
Ecole Polytechnique and the ST2I institute of CNRS.

In addition, I am grateful to Dr. Golbert Zakeri and Jonas Villumsen for helping me in my work but also for
welcoming me in the working environment. Finally, I thank the other students that have given me their attention and
their support.
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Abstract

The inter-island HVDC line is a major transmission line in New Zealand, as it is the only link between its two islands.
It enables the exportation of electricity from the South Island to the North Island. These exportations highly benefit
both the generators of the South Island and the consumers of the North Island. Right now, South Island generators
are charged for the entire cost of the HVDC line according to a very controversial allocation system. The extra cost
incurred by South Island generators is not only claimed by some to be inequitable, but it provides a possibly perverse
incentive to build new generation in the North Island, which may be more expensive.

A modification of the current allocation process has been proposed. Generators would be required to bid both for
electricity supply and for HVDC line rights. In this paper, we study, given the allocation process, what kind of strategies
generators may be tempted to follow, with the use of game theory and the study of supply function equilibria. We show
how unstability, inefficiency and market power can result from this process.

Index Terms - Transmission constraints, linear optimization, cost allocation, game theory, Nash Equilibrium, supply
function equilibrium.

Résumé

La ligne HVDC inter-island est une ligne de transmission électrique majeure en Nouvelle-Zélande, car elle est la seule
à rejoindre les deux îles qui composent le pays. Elle permet ainsi l’exportation de l’électricité de l’île du sud vers l’île
du nord, ce qui profite grandement aux générateurs du sud et aux consommateurs du nord. Au jour d’aujourd’hui, les
générateurs du sud paient leur utilisation de la ligne HVDC selon un système d’affectation des prix très controversé. Non
seulement les générateurs du sud se plaignent de l’inéquité de cette allocation, mais en plus elle incite les générateurs à
s’implanter sur l’île du nord plutôt que sur l’île du sud, même si leurs coûts de production y sont plus importants.

Un système d’affectation alternatif a été proposé. Dans ce système, les générateurs se doivent de déclarer à la fois
leurs offres en électricité et leurs demandes en droits d’utilisation de la ligne HVDC. Dans ce rapport, nous étudierons,
étant donné ce système, les strategies que les générateurs seront amenés à suivre, à l’aide de la théorie des jeux et de
l’étude des équilibres de fonctions d’offre. Nous démontrerons ainsi l’instabilité, l’inefficacité et les pouvoirs de marché
conséquents qui en resultent.

Mots clés - Contraintes électriques, optimisation linéaire, affectation des coûts, théorie des jeux, équilibre de Nash,
équilibre de fonctions d’offres.
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Chapter 1

Introduction

The efficiency of electricity generation and transmission has become an important topic as regions around the world seek
to reduce their energy costs. Until recently, electricity generation, transmission, distribution and retailing was run by
a central (often government-owned) body. However, many countries have undertaken a restructuring of their electricity
systems by removing the vertical integration of generation, transmission, distribution and retailing and attempting to
replace it with separate horizontal layers, each made up of several competing organizations. Such competition has been
introduced in the expectation that it will lead to an increase of efficiency and a decrease in electricity prices. The hope
is also to provide significant signals for investments and new entry.

However, because of its physical properties, electricity transmission is considered to be a natural monopoly. Thus,
many countries like England, Wales, Australia and some parts of America (as opposed to California) have decided to
structure their market as electricity pools, where transmission is managed by a single entity often called the Independent
System Operator (or ISO) . Given demands of retail companies and wholesale purchasers, the ISO takes into account
offers from generators and uses an optimization program that chooses the dispatches that minimize the total revealed
cost of power delivery. The program also gives the prices of electricity for both generators and purchasers that may
depend on their location.

In New Zealand, the transmission network is owned and operated by a state-owned company called Transpower,
whereas the generators are generally owned by a small group of private companies, and state-owned enterprises. The
generators inject power into the network, which will supply the nodes of the network. At each node, some of this energy
is consumed either by large purchasers or by retail companies that on-sell it to households and small industries. Any net
surplus of energy at a node is transmitted through the network to nodes with an energy deficit. Since the transmission
of power incurs energy losses, the price of energy is generally different from node to node.

A major component of the New Zealand transmission system is the High-Voltage Direct Current (HVDC) line joining
the South Island to the North Island (see Figure 1). This was commissioned in 1965 (and upgraded in 1993) with the
main purpose of conveying hydro-electric power from the South Island to the population centres in the North Island.
Since the South Island generators tend to export electricity to the North Island, they decrease the North Island prices
of electricity, but these generally remain higher than in the South. The benefits for South Island generators based on
the higher prices they can earn in the North due to the HVDC line is estimated to be around NZ$240 million per year.

In its standard configuration the HVDC line consists of two parallel cables (or poles) although one of these is currently
being repaired. The costs of maintaining and improving the HVDC line are borne by Transpower, who recover them by
charging the users. These costs are estimated to be approximately NZ$88 million per year. Currently the charge for use
is allocated entirely to South Island generators, in proportion to their last 12 month’s peak generation. Although it has
been in use for some years, this charging scheme has understandably been unpoular with South Island generators, who
view it as inequitable. Their claims are given some validity by observing that the HVDC link carries flows from North
to South in winters when the hydro-electric lake levels are low (which has occurred in four of the last ten years).

Transmission cost allocation is a complicated problem, as it leads to games. Problems of fixed-cost allocation have
a long history in economics, going back to the seminal work of Nash [6], Shapley [10], and Aumann [9] in cooperative
game theory. However these methods have not received much attention in the electricity market literature perhaps
because of their complexity. By considering a coalition formation, [12] shows that an allocation using the Shapley value
has the advantage of being simple, transparent, fair and gives adequate price signals, although it may lead to a difficult
mathematical resolution. In [11], the authors show how, in a case where three plants have peaks at different time, a
cooperative game can deeply reduce their cost, if the allocation is not fair. In [4], it is explained how restructured energy
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Figure 1.1: New Zealand transmission grid

markets may lead to market power, with an empirical analysis. The existence of incentives to exercise market power
in energy trading makes the use of non-cooperative game theory problematic, as allocation systems like Shapley value
can lead to incentives to increase prices in the energy market. This has led to different transmission pricing approaches
in different countries. In [8], Richard Green draws comparisons of electricity transmission pricing in several countries
according to six criteria that prices should satisfy.

In response to dissatisfaction with the current cost allocation scheme in New Zealand, a number of alternative
proposals have been mooted. In this study we consider one recent candidate pricing scheme proposed by the NZIER
[5]. This proposal is a variation on the flow-gate scheme for transmission rights (see [2]). Under the NZIER scheme,
generators bid for the use of capacity on the HVDC in a rights auction. Given an allocation of capacity rights, the power
transfer of the generator from the South Island to the North Island is restricted by its allocation. Secondary trading of
allocation rights is proposed to allow transfer of these to generators who value them the highest, and a spot market is
also proposed in which small quantities of transmission rights can be traded at the margin at the same time as energy
is dispatched by Transpower.

In this report we examine the NZIER scheme from several perspectives. We show by example that a fixed allocation of
transmission rights can result in an inefficient energy dispatch, demonstrating the need for a real-time balancing market
in these instruments. We then study a stylized auction mechanism for allocating transmission rights by constructing a
supply-function equilibrium for a system with two generators. The equilibrium model assumes that agents offer their
generation at marginal cost in the energy market, but strategically offer demand functions for HVDC capacity that
limits their output. The computational results from this model show that exercise of market power in the capacity
auction leads to inefficient dispatch, and non-competitive prices in the energy market.

The report is laid out as follows. First, we will give a simplified modeling of the electricity market that takes into
account the effects of the HVDC inter-island line. Then, we will introduce the game problem in electricity and study
the case of no-line charge in chapter 3. In chapters 4,5,6 and 7, we actually study the proposed pricing scheme. First,
we present it and examine briefly fairness and efficiency. Then, we consider the game on announced costs with simple
rights allocation. Chapters 6 and 7 focus on line rights bids with a fixed and a uncertain demand. Chapter 8 briefly
discusses an alternative line allocation. Finally, I give a statement about my internship before concluding in chapter 10.



Chapter 2

Modeling electric transmission

In order to have a better understanding of the consequences of an allocation of transmission rights, we need to describe
the properties of electric transmission. There are two aspects. The first one is physical, and leads to a number of
constraints. The second one is economics, and is controlled by the System Operator through an objective function.

2.1 Description of electric transmission and of the System Operator’s pro-
cess

Electricity has several specific properties, that complicates greatly the problem of transmission.

1. The flows in the network follow the physical laws of Kirchhoff. (Kirchhoff contraints (K))

2. Generators and lines have a maximum capacity. (Capacity constraints (C), divided into Generator Capacity
constraints (CG) and Line Capacity constraints (CL))

3. The loss in transmission is a convex increasing function of the transfered power. (Loss constraints (L))

4. No power can be stored, thus the generation must be synchronised with the consumption, so that supply may
meet demand at every node and at any time. (Demand constraints (D))

5. Consumers highly value electricity, but their demand vary through time.

The System Operator maximizes global efficiency. Hence the suppliers must be chosen among the most profitable
generators able to meet the demand, according to the physical constraints. In order to do that, the System Operator
runs a Linear Program that takes into account the characteristics of electric transmission and minimizes the global cost
of the power generation.

2.2 Linear Program
We are now going to simplify the constraints, so that we can translate them into simple equations. In particular, we
will try to get these equations as linear as possible. This will lead to approximations that we will discuss.

2.2.1 No-loss assumption
What happens when the losses on lines are taken into account is that there are geographical overcosts for generators
distant from the demand. This is as if a tax has been added on those generators, or if they had an incremental cost of
production. This caracteristics highly complicates the shape of solutions of the linear program. Therefore, we neglect
them, so that equations are easier to write and results easier to present.

8
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2.2.2 Network Modeling
We will be representing the transmission line network by a non-oriented graph. Each node i has a demand di. As
consumers highly value electricity, we will make the approximation that the demand is inelastic, i.e. independent from
the price. But it may vary through time.

Each node has an output xi, which can be constrained to be nil, if there is no generator. But, it has to be positive.
Moreover, through each line (i, j), a relative power fi→j can be transfered from i to j, and it is the opposite of fj→i.

Figure 2.1: Example of a network

2.2.3 Kirchhoff’s laws
In addition to flow conservation constraint is another one due to Kirchhoff’s laws, called the loop flow constraint. If
X(i, j) is the reactance of a line, then the angles θi and θj in i and j will be related through the commonly used
approximation X(i, j)fi→j = θi − θj , known as the DC power flow equation.

These equations can also be written as Bf = 0, where each line of the matrix B refers to a loop of the graph. Simply
notice that it only affects loops, and that it is a linear condition.

2.2.4 Capacity constraints
Generator capacity constraints can be written (CG) : ∀ node i, 0 ≤ xi ≤ Qi, with Qi = 0 if there is no generator at node
i. Otherwise Qi is the maximum capacity of the generators at node i.
Line capacity constraint can be written (CL) : ∀ link (i, j), −U(i, j) ≤ fi→j ≤ U(i, j) where U(i, j) is the maximum
capacity of the line.

2.2.5 Demand constraints
Since supply equals demand, we have the demand constraint (D) : ∀i, xi +

∑
(j,i)∈E

fi→j ≥ di. That means that the

demand at node i can be supplied by the plant at the same point and the flows coming from its neighbour nodes.

2.2.6 Model
Let’s sum up the remarks made so far.

Definition 1. We define the following constraints.

• (D) : ∀i, xi +
∑

(j,i)∈E
fi→j ≥ di.

• (K) : ∀(i, j), fi→j + fj→i = 0, Bf = 0 and x ≥ 0.

• (CG) : ∀i, xi ≤ Qi.

• (CL) : ∀(i, j),−U(i, j) ≤ fi→j ≤ U(i, j).
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Notice that these constraints are all linear. We will now note (DK) = (D)∪ (K), (DKCG) = (D)∪ (K)∪ (CG) and
(DKC) = (D) ∪ (K) ∪ (CG) ∪ (CL).

Now, every generator has a real marginal cost c̄i. However, it gives an announced marginal cost ci (that might be
different from c̄i) to the System Operator, which tries to maximize efficiency. In order to do that, it minimizes the total
announced cost, that can be written c · x. Thus,

Problem 1. The System Operator chooses the dispatch x that minimizes total announced cost under constraints (DKC)
with the use of the following linear program :

(LP1) : C = min
(DKC)

c · x

2.3 General properties
In order to have a better understanding of this process, and how it applies to the New Zealand network, we are now
going to look into the mathematical properties of (LP1) and some of its more simple versions.

2.3.1 The set of admissible points
Theorem 1. If the graph of the network is not connected, then (LP1) can be divided into independant similar linear
programs that each refer to a connected component. This is true under (DK) with any of the other previously written
constraints.

This is due to the fact that constraint equations only link neighbour nodes. Therefore, from now on, we will suppose
that the graph of the network is connected. We then have the following theorem.

Theorem 2. Suppose (DK). Then any plant can supply any demand without excess. Moreover, there is then one single
admissible flow.

Proof. Suppose the demand is only at one point. Then Kirchhoff’s laws say that, as you inject the same amount of
power as the demand requests, the current will flow through the network in a determined way. Thus, the theorem is
true if demand is located at one single node. But the equations are all linear. Therefore, by superposition, the theorem
is proven for any demand.

2.3.2 Spot prices
One important aspect of the electricity pool market is that not only does the linear optimization program give the
dispatches of each plant, but it also sets the electricity spot price at each node.

Definition 2. Dual variables of constraints (D) are the spot prices π.

As a matter of fact, these dual variables represent how much electricity is valued. πi represents the increase of the
total cost, when demand at node i has an increase of 1 unit. Hence, a generator at node i that propose a production of
electricity of xi is selling a product that is valued at πixi.

2.3.3 Structure of the solutions
We can now have a global understanding of what happens with (DKCG) constraints.

Theorem 3. Suppose (DKCG) and the components of (ci) are strictly increasing. Then x∗ is the optimal solution to
(LP1) if and only if it satisfies

∃i,∀j,

⎧⎪⎪⎨
⎪⎪⎩

j < i⇒ x∗j = Qj

x∗i =
∑

dk −
∑
j<i

Qj

j > i⇒ x∗j = 0

In addition, spot prices are uniform and are equal to ci.
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Figure 2.2: (DKCG) dispatches

Proof. Figure 2.2 illustrates this theorem and gives a better understanding. Basically, as any plant can supply any
demand, we just need to inject in the network as much power as the demand requires. Then, to minimize global cost,
the cheapest plants need to be the supplier.

Now, if the demand changes a little bit at any node j, only that generator at node i will modify its production.
Hence, the total cost of the production will increase with a coefficient ci, which, thus, is the spot price at node j.

Figure 2.2 can be interpretated as a supply function, that needs to meet the inelastic demand. The colored area is
the global cost. Efficiency corresponds to the minimization of this area.

2.4 Line capacity constraints
Before dealing with the HVDC line, let us notice the major consequences that line capacity constraints can have with
the following example. The point of this section is mainly to justify the assumption that no congestion exists inside
each island network.

In order to do that, we will give us an example where line congestions play a major role.

2.4.1 Example
Consider the following network.

Figure 2.3: Example where (CL) are critical

Here, we only have two generators 1 and 2, and all the demand is located at node 3. We suppose that the generators
do not have any capacity limit, but lines do.
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2.4.2 Set of admissible outputs
Figure 2.4 draws the constraints and locates the set of admissible outputs.

Figure 2.4: Constraints of the example on figure 4

2.4.3 Consequences of the line capacity constraints
If there were no line capacity constraints, then the set of admissible outputs regardless of the demand would be the whole
top right hand corner of the plan. If you only add generator capacity constraints, then the set would be a rectangle.
In both cases, it would be quite easy to find the lowest global cost level curve that intersects demand in the set of
admissible points, since it would correspond to maximize the output of the low cost plant, and complete with the other
plant.

In the case of line capacity constraints, we can have weird phenomena like here, where one generator needs the other
to produce power, in order to increase its output. In this case, the demand can only be met if both generators work.
Not only does it complicate the dispatch process, but it could also cause a power outage, if one of the generators breaks
down.

2.4.4 Spot price increase
The spot prices in this example are very high. The optimal solution here can be read on the graph as the intersection
of constraint 1 → 3 line and demand constraint line, which gives us x1 = 290, x2 = 260. Now, if the demand changes
from 550 to 550 + ε, with ε very small, then the optimal solution will remain the intersection of those two lines. It will
be x1 = 290 − ε, x2 = 260 + 2ε. Hence, global cost will be raised by −100ε + 2 × 400ε = 700ε. This means that spot
price at node 3 is 700$/MW, which is much much higher than announced marginal costs. Note that the spot price at
node 1 (resp. 2) is the marginal cost of plant 1 (resp. 2), as we use the previous reasoning by considering the excess of
outputs at generator nodes.

The reason of the high spot price is that, in order to have a higher global output, generator 1 needs to produce less,
and generator 2 needs, not only to produce the increment that demand has asked for, but also what generator 1 has not
produced in this process. Yet, marginal cost of generator 2 is much higher, hence the spot price.

2.4.5 Conclusion about line capacity constraints
When a congestion occurs too often, the electric transmission company reacts and increases line capacities. Solutions
using line switches have also been considered. However, this is not the point of this paper. We will assume that there
is no such problem inside each island network. The only congestion we will be facing concerns the inter-island HVDC
line.
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2.5 The inter-island HVDC line
As said earlier, the New Zealand transmission network has the particularity to be composed of two parts linked by a
single line.

Figure 2.5: Inter-island HVDC flow

Moreover, costs of energy in the North Island are higher, whereas demand is also higher. Thus, the inter-island line
is often congested by a flow that goes from south to north. Hence, our previously enunciated theorems cannot be applied
directly. However, we will add a hypothesis, that will help us get results.

Definition 3. In the rest of this paper, we will assume that the inter-island HVDC line is the only line that can be
congested. We will note that constraint (CHVDC), that, added to (DKCG), leads to (DKCGCHVDC). The flow through
the HVDC line from south to north is fS→N , and has to have an absolute value lesser than HVDC capcity UHVDC .

2.5.1 HVDC line related notations
HVDC allocation proposals often try to compare what happens with what would happen, had the line not been there.
The idea is that the difference between the case with and the case without the line, is the impact of the line. Those who
take advantage of this difference should therefore be the ones who pay for the line.

As we will often compare those two cases, we will introduce the following notation. Variables that refer to the case
without the line will now be noted with a 0 in superscript, which gives us x0, π0 or f0 for instance, as opposed to the
case with the line, with no annotation(x, π, f).

2.5.2 Results concerning the HVDC line
Now, with the previously defined hypothesis, we have the following result.

Theorem 4. Suppose (DKCGCHVDC), dispatches are optimal, and flow goes from South to North. Then

• Southern (resp. northern) dispatches are the same as with the HVDC line cut and a demand incremented (resp.
decremented) by the South to North power flow.

• Prices in South (resp. in North) are uniform.

• Southern price is lower than northern price (equal if there is no congestion).

• Southern price is higher than without HVDC line, whereas northern price is lower.

Proof. Suppose (LP1) gives a solution with a flow f1
S→N ≥ 0. Then (LP1)has the same optimal solution if you add

the constraint fS→N = f1
S→N , since we are reducing the set of admissible points, but keeping the optimum. Then, we

can separate the linear program into two linear programs for each island, as the flow can be considered as a negative
demand in the North Island. The optimal solution gives admissible points for the two programs, hence the existence of
solutions.

For each island, we can apply theorem 3. This proves the uniformity of the prices in each island and gives us iN and
iS , plants that are working, but not at full capacity, in the north and the South Island. Denote the northern price by
ciN , and the southern price by ciS . If ciN < ciS , then iN should produce the output of iS , as it would minimize global
cost. The flow it would generate is admissible, as it adds a north to south flow. But that would be absurd, since we
have supposed the dispatches optimal. Hence the theorem. What’s more, outputs in south increase, thus prices too. It
is the opposite in the North Island.
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This theorem shows that southern generators take advantage of this line, as they can increase their outputs by
exporting power to the North Island and benefit the southern price increase. On the other side, northern consumers
also take advantage of the line, as their spot prices decrease. Accordingly, we will assume that the former plants export
as much as possible to the North Island.

2.5.3 HVDC line congestion constraint
This leads to the following hypothesis.

Definition 4. In the rest of the paper we will assume the HVDC line is congested. Added to the (CHVDC) hypothesis,
this gives us constraint (CcongestedHV DC ).

With (DKCGC
congested
HV DC ) hypothesis, we can now apply theorem 4 with the knowledge of the South to North flow.

Hence, the problem can now easily be solved. Figure 2.6 illustrates the solutions.

Figure 2.6: Incremental outputs in the South Island

2.5.4 Effects of the HVDC line
Despite losses in this line, global minimized costs get lower thanks to the inter-island HVDC line, which means that the
dispatch is more efficient. Yet, as the cost of the inter-island is quite high (NZ$88 million per year), there comes the
question of the allocation of this cost.

Obviously, we would like to have those using the line paying. However, it is physically impossible to allocate the part
of the power of flow to each generator. Flows are mixed and have become indistinguishable. Therefore, some economists
have proposed to compare outputs with the line, and without the line. The difference of outputs of each company should
then be linked with the HVDC line allocation. The following theorem justifies this process.

Theorem 5. Suppose there is no loss. There can be capacity constraints. Assume that (LP1) gives an optimal solution
where the flow through inter-island HVDC line goes from south to north. Then the total output of the North Island has
now a lesser value than in the optimal solution of the problem where this line has been cut.

Proof. - We can separate the linear program into two linear programs for each island, as in the proof of theorem 4.
Therefore we have added a set of points for which the constraints are (K) and ∀i, d′i ≤ xi +

∑
fj→i ≤ di. But, as we

sum these latter constraints, we can see that the set of incremental points we are looking at lead to a total output lesser
than the total demand of the North Island, which is lesser than the total output of the North Island with the HVDC
line cut. Therefore, the optimal solution needs to be the solution with the line cut, or a point with a lesser total output,
hence the theorem.



Chapter 3

Introduction to electricity game

Now that we have a better understanding of the electricity pool market, we can focus on the main topic of the paper.
In this chapter, we will describe a model of the market, and study the behaviour of its agents in a basic case, where
there is no line charge.

Note that article [1] proves the existence of symmetric supply-function equilibria in an electricity pool market.

3.1 Generalities
Let us describe the main characteristics of the game problem.

3.1.1 Econcomical agents
So far, we have looked at the process used by the System Operator. However, in this economics problem, it is important
to understand the behaviour of every actor.

The System Operator wants to minimize global cost. In order to do that, it has designed a dispatch process, that
takes into account the announced costs of the generators. This problem, solved by (LP1) will not be discussed.

Yet, it also has to design a transmission allocation process, which will affect the revenues of the companies. Given
this process, companies have optimal strategies to maximize their profits. These strategies are what we will be studying.

3.1.2 Profits
In order to do that, let’s have a look at the other agents of this system, the generator companies. On the supply function
graph, we can read the profits made by each generator. Figure 3.1 illustrates this.

Figure 3.1: Profits

15
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The profits that the System Operator can attribute to each plant is the hatched part. It is nil for plants 3,4 and 5.
However, the real profits are the parts in bright colors, with grey parts corresponding to negative profits. These areas
are located between real marginal costs curve and clearing price. Here, we have assumed that the real marginal costs c̄i
were decreasing, because of the economies of scale, and that there are now fixed costs. Of course, this latter hypothesis
is quite debatable. We will try not to forget those fixed costs when discussing the results of our study.

In this example, the profit of plant 4 is negative. This is due to the fact that its announced cost is lower than real
marginal cost. Yet, it does not mean that its strategy has been wrong. As a matter of fact, demand will vary through
time. When it turns out to be high enough, so that plant 5 starts to work, it will have quite a positive profit, that it
may not have had, had it announced a cost higher than that of plant 5.

3.1.3 Real costs and announced costs
Notice that the real global cost is different from the announced global cost that the System Operator tries to minimize.
The real global cost is actually located under real marginal cost functions, on the left of the demand line.

Therefore, as announced costs may be quite different from real costs, it is an interesting question to find out whether,
by minimizing announced global cost, the System Operator will be close to the real minimized cost allocation.

3.1.4 Cost function hypothesis
As we can see here, considering marginal costs c̄i are not constant leads to a much more complicated game problem.
Therefore, we will suppose these values constant.

We can have another explanation for such an approximation. As the number of plants is high, and as there is
only one working-but-not-at-full-capacity plant, most of the time, plants are either not working, either working at full
capacity. Then, supposing that we restrict ourselves to those cases, replacing the real marginal cost function of plant
i by a constant marginal cost equal to the mean cost won’t affect the game problem, as profits will remain identical

(equal to πQ−
∫
c̄ for a quantity Q at price π, with marginal cost c̄). Either way, we have the following assumption.

Definition 5. From now, on we will assume that fixed costs are nil and real marginal costs are constant. This assumption
will be noted (Hcost).

3.1.5 Game problem
In practice, all the plants are owned by a small number of companies. Now, each company k possesses a set Ik of
plants. Their goal is to maximize the total flashy parts above their plants, given the rules of the dispatch and the
electric transmission network allocation, by setting the right announced costs. In our case, dispatch rules are following
theorem 4 and figure 2.6, since we will be making assumption (DKCGC

congested
HV DC ), and the electric transmission network

allocation is restricted to the HVDC line allocation, in the forms described in the next sections.
We have almost written the problem as a game theory problem. Each company is a player, that will be regarded as a

rational and intelligent person. Notice that this game happens every 30-minute, for which an estimation of the demand
can be made by all the players. Yet, we will suppose that there is an uncertainty about this demand. Given that, the
players have to choose their announced costs (and, in the pro-rata-with-incremental-output allocation, their line rights
bids). Therefore, we will be looking at profits over a long period of time.

In the next chapters of this paper, we will mainly consider a pro-rata-with-incremental-output allocation for the
inter-island HVDC line. We will try to solve the game problem, and look at the announced costs that the players will be
choosing, as they maximize their profit. In particular, we will study the existence and the stability of Nash equilibria.

3.2 Game with no line rights charge and no line congestion
In this section, we will focus on the simplest case. This example is fundamental, because it reflects what happens when
no line is congested, and there is no rights allocation for lines. Nevertheless it is still quite complicated.

3.2.1 Hypotheses
The problem here is a game problem, where, given a marginal cost function and the System Operator’s rule of dispatch,
companies maximize their profits by choosing announced costs for their generators. We will suppose that the number of
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plants is high enough to approach company real marginal cost and announced supply curves with increasing, continuous
and regular functions.

Also, since there is no line congestion, the rule of dispatch is to choose the rights spot price, so that any generator
whose announced cost is less than the price works at full capacity, and so that their cumulated output is equal to
demand.

Now, we suppose that the companies choose their announced cost curves simultaneously, and there is uncertainty
about the demand. Our goal is to highlight a Nash Equilibrium.

3.2.2 Company viewpoint
Every company k has a real marginal cost function c̄k(qk), where qk is the output, and looks for the optimal solution c∗k.

It supposes that the cumulated cost function of its rivals is C−k(q−k). The link between this function and the cost
functions of the rivals is that, for any price p, C−1

−k(p) =
∑
j �=k

c−1
j (p) (the quantity offered at price p by the set of rivals is

the sum of the quantities they each offer).
When the demand d is fixed, given the cumulated cost function of its rivals, a company k simply has to choose a

couple (qk, ck) so that ck = C−k(d− qk) and so that the company’s profit is maximal. As demand varies, we get a curve
ck(qk).

The following figure illustrates the choice of these points.

Figure 3.2: Best reply curve to other company’s supply function

The condition ck = C−k(d − qk) means that the company k has to choose a point on the curve. The maximization
of the profit condition means that the yellow area is equal to the green area. Hence, we get the point A. For another
demand, we get the point B. As demand varies, we get the green curve, which is the best reply of company k to the
bids of its rivals. We may have better results using the Z function introduced in 7.1.

Note that the more the blue curve is horizontal and the red is vertical, the more the equilibrium is close to the
marginal cost curve. Yet, the more company there is, the more the blue curve will be horizontal.

3.2.3 Equilibrium
Now, for any given set of supply functions c = (ck), there is a best reply BR(c) = (BR(c)k). The existence of a Nash
Equilibrium is equivalent of the condition ∃c, c = BR(c).

A common technique would be to look at the the sequence (cn) defined by cn+1 = BR(cn), with for instance c0 = c̄
or c0 = c̄+ c0, where c0 is a constant.

If there is a solution, especially when the number of companies is high, we can note that efficiency would not be that
bad, as every company has an announced cost slightly higher than the real marginal cost.

Moreover, the more companies there is, the more we may assume the cumulated costs of other companies more
horizontal, and the closer the announced costs will be from real marginal costs.



Chapter 4

The pro-rata-with-incremental-output
allocation

Right now, in June 2010, southern generator companies pay a tax pro rata with their maximum production in the
South Island. In [7], market power is enhanced by considering the game generated by the electricity pool market with
financial transmission rights. But other market designs have been suggested. One of the most important suggestion is
a pro-rata-with-incremental-output allocation. We are going to introduce it in this chapter. Chapters 5, 6 and 7 also
consider this allocation.

4.1 Description of the allocation
Rights for the line could be sold. Any company k would then be allowed to produce the quantity rk related to this right
in addition to what they would have produced, had the line not been there. Thus there would be another market, the
market for the rights to the line, that would be decomposed into three phases.

First, an auction or a pro-rata-with-previous-years-use system, or a mixed system, would define the initial allocation
of the capacity rights. Then, every half-hour, secondary trading would enable Transpower to offer the rights, that have
not been allocated in the first place. Finally, generator companies would enter every half-hour a spot trading of capacity
rights, where they would bid and offer rights. This would lead to a clearing price, and to the transactions.

We can note that the spot market for rights trades is equivalent to a system where rights are rented for every half
hour. Then companies would make bids, and a clearing price can be chosen so that the sum of the rights reaches the
total amount of rights.

4.2 Unfairness
The question of the fairness of the allocation is important. Since we want the energy market to be as liberal as possible,
so that anyone who thinks he can produce energy more efficiently can easily enter the market. Furthermore, if the
allocation is too unfair, complaints will quickly rise, and the market design would have to be changed.

Basically, we want the people who take advantage of the HVDC line to pay for the use of it. Accordingly, this idea of
a pro-rata-with-incremental-output allocation has been suggested. However, as we will see in this section, this allocation
is not fair.

Suppose 5 companies each possess one plant. We are working under (DKCGC
congested
HV DC Hcost) hypotheses. Let’s

assume that the price of the use of the HVDC line is pHVDC for the incremental outputs. Then we can draw the
following graph (figure 4.1).

Let us well distinguish the profits made with the HVDC line cut, in dark colors, and the profits made by virtue of
the HVDC line, in bright colors. The parts in grey correspond to the HVDC line cost contributions, and can be count
as a negative profit for the company in which the grey rectangle is.

We can see that every company makes incremental profit, thanks to the HVDC line, because the increase of the
global output has lead to an increase of the southern spot price. Moreover, it is interesting to notice that the companies
who make the most profits thanks to the line are not exactly the same as the companies who produce more thanks to
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Figure 4.1: Profits in a pro rata with incremental output allocation

the line. As a matter of fact, generators 1,2 and 3 all make a large incremental profit, but plant 5 does not make an
important incremental profit.

Yet, despite its relatively low profit, plant 5 is one of those who pay the most for the use of the line, which leads it
to a negative total profit, if we take into account the line allocation. On the other hand, plant 1,2 and 3 do not pay a
single dollar and totally take advantage of the line.

That’s why this pro rata with incremental output allocation is unfair. Relatively expensive plants of the South
Island are hugely disadvantaged by this allocation. An alternative scheme that we call pro-rata-with-incremental-profit
allocation is described in chapter 8.

4.3 Inefficiency without line rights trades
In this section, we will suppose that companies possess rights on the line that cannot be sold, or that will not be sold.
The reason can be individual interests, erroneous reckonings, lack of time to exchange rights or the inexistence of a spot
market for rights. What we are now going to look at is the inefficiency that the line allocation can cause.

Suppose we have 3 companies. Companies 1 and 2 each possess 2 plants, whereas company 3 possess another plant.
Each company has about one third of the total rights on the HVDC line. We are working under (DKCGC

congested
HV DC Hcost)

hypotheses. The following graph shows how the dispatch will be chosen.
The pink and the green areas are the costs of incremental outputs in an efficient dispatch. However, because each

company has rights to produce the output that would have made with the HVDC line cut, incremented by a quantity
pro rata with the value of their rights, they all have incremental outputs. Therefore, plant 4 and 5 of companies 3 and
1 are now working. The real incremental costs are in pink, yellow and blue.

The pink area is the common incremental costs. The yellow area represents the difference between the incremental
costs when companies possess rights and the incremental costs in an efficient dispatch. As we can see here, this area is
quite important, which shows that this allocation system is quite inefficient.

What’s more, the price with this allocation is higher than the price in an efficient dispatch, which is a major drawback
for the consumers. In fact, we have the following theorem.

Theorem 6. Suppose that the real and announced costs are all different, and that real costs are ordered in the same
way as announced costs. Then, there exists a unique rights allocation that leads to efficiency.

Proof. This allocation corresponds to the incremental outputs between efficient dispatches with and without the HVDC
line. Since this allocation gives efficiency, the existence has been proved. Now, suppose we have another allocation,
then that means that there is at least one plant that is not working as much as in an efficient dispatch. Instead, a
strictly more expensive plant has rights to dispatch and is producing. Give some of these rights to the former plant,
and efficiency would be strictly improved, thus the unicity.
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Figure 4.2: Inefficiency in a pro rata with incremental output allocation

If the announced costs are not all different, existence can still be proven. But, there can be a set of optimal allocations.
This set would be a polyhedron.



Chapter 5

Game on announced costs

We still consider the pro-rata-with-incremental-output allocation.
So far, we have shown inefficiency and unfairness with given announced costs and rights allocation. However, those

variables are actually chosen by the companies. Therefore, as these companies want to maximize their profits, they do
not choose those variables randomly. They are faced with a complex game problem, that we are now going to study.

In this chapter, the game on rights allocation will be reduced to its basics. What will interest us is the kind of
electricity supply functions that companies may be tempted to bid.

5.1 Asymmetric duopoly example
In order to understand the game on announced costs, we will take a simple example of a duopoly. Our purpose here is
to illustrate how one player in the duopoly can have an increased profit by bidding strategically, but not to compute an
equilibrium.

5.1.1 Preliminary remarks
Let us notice that if their announced costs are higher than the northern price, then southern generators which are
supposed to supply incremental outputs will be replaced by northern generators whose announced costs are lower.
Therefore, there is this limit for southern generator offers.

We can also notice the difference between two kinds of plants, those which enable profits with high outputs and low
real costs and those which increase the southern spot price. Also notice that there only needs to be one company that
possesses plants whose goal is to increase southern spot price.

5.1.2 Hypotheses
We are supposing that the companies have an estimate of the southern demand, and of the northern demand. With the
northern demand, they can estimate the northern price. Also, we will suppose that there is a correlation between the
southern demand and the northern demand, hence with the northern price, as people have the same reasons to increase
power usage.

Suppose there are companies 1 and 2. Company 1’s (resp. 2’s) generators all have a real marginal cost equal to c̄1
(resp. c̄2). Assume there is no generator capacity constraint and that company 1 is the only strategic company, as the
other one sets its announced costs c2 = c̄2.

Suppose now that company 1 has an infinite number of generators, so that he can choose as many announced costs
and capacity limit as it wants. This can be regarded as the choice of an increasing supply function s(x), to meet any
demand. The game problem for company 1 is now to find the rights supply function that will maximize his profit over
the period corresponding to the length of his choice of announced costs.

5.1.3 Shape of the solution
Theorem 7. The following bold line gives the shape of the solution of our problem (the value of Q0 is the only degrees
of liberty), with a purchase of all the line rights.

21
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Figure 5.1: Supply function and strategies of company 1 in a pro rata with incremental output allocation

The green area represents company 1 profits, had there been no HVDC line. The blue area is his profit thanks to
this supply and the increase of price. The yellow and grey part corresponds to incremental profits due to export, but
the grey part is also the cost of the line rights. Therefore, total benefit is the sum of green, blue and yellow areas.

Proof. If c1 is always less than c2 then company 1 cannot win more than the green area, since the electricity price is
max(c1, c2) ≤ c2. The drawn black line with Q0 equal to the highest expectable value of southern demand always does
better (strictly better for high demands). Hence, in the optimal curve, there is a quantity for which c1 > c2. Call Q0

the lowest quantity of the supply function for which c1(Q0) ≥ c2 (Q0 may be nil).
Note that company 2 values line rights at πS− c̄2, so company 1 needs to pay slightly more to have all the line rights

at lowest line rights price. Hence, the green area will always be a rectangle whose bottom is c2 and whose top is πS .
For southern demand in [Q0 −UHVDC , Q0] (which can be always true if the width of the range of possible southern

demand is less than the HVDC line capacity), the profit reached with the drawn line as supply function is the maximum
reachable profit. As a matter of fact, the southern price, defined by the intersection of the supply function and the
cumulated demand dS + UHVDC , is equal to the northern price, which is the maximum it can be. Moreover, the total
output of company 1 is dS + UHVDC , which, once again is the highest output reachable by company 1.

Now, if the southern demand is less than Q0−UHVDC , he can only hope for the green part, which will be maximized
for c1 slightly less than c2. Therefore, company 1 should have a horizontal line before Q0, slightly under c2.

And if the southern demand is higher than Q0, then his output will be limited to Q0 + UHVDC . The section of his
bidding curve beyond this point won’t matter. For instance, it can be vertical, which will make sure that the southern
price always equal to the northern price. Company 2 will take advantage of that.

Hence figure 5.1 gives the shape of the optimal bidding curve, with a degrees of liberty on Q0.

5.1.4 Determination of Q0

The problem is now for company 1 to choose the right Q0. In order to do that, the company has now to look at its
profits, described in the following figure.

The two compared profits are the red line and the blue line. Superpositions are in purple. In the red case, Q2 is
higher than in the blue case (Q1). The pink area is the part that red line does better than blue line. The yellow area
is the opposite. Let us notice that when the Q1 and Q2 both increase of the same amount, the pink area diminishes,
whereas the yellow area increases. What’s now interesting to calculate is the limits lpink(Q0) and lyellow(Q0) of the two
areas divided by Q2 −Q1 when Q2 → Q1 = Q0.

Now, the southern demand varies during the year. We may assume that the distribution of it is roughly a Gaussian

function. Let f be the distribution. Then, we are now looking for the Q0 that maximizes
∫

Πf , where Π is the profit
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Figure 5.2: Comparison of profits of Company 1, with two values of Q0

that depends on Q0. This gives us a condition, that we will not write because of its length. Roughly, lyellow(Q0)f(Q0 −
UHVDC) = lpink

∫ dmax

Q0

f . We said roughly, because the second term is not exactly that. As lyellow is increasing and

lpink is decreasing, there is a unique solution to that problem.

5.1.5 Conclusion about the asymmetric duopoly example
In short, our study has shown, that company 1 has a strategic solution to maximize its profit. Obviously, since it
concedes outputs to its more expensive rival, this strategy does not lead to efficiency.

5.2 Generalisation of the example
We are now going to try to generalize our observations.

5.2.1 Oligopoly
We can notice that this strategy of company 1 is the right one even if he has a small number of competitors in the
South Island, as long as he is the one with the lowest real marginal costs, and as long as the other companies play non
strategically by choosing an announced cost slightly higher than their real marginal costs.

5.2.2 Company 2’s response
In the case where company cannot buy line rights, it may still have a better response than the dumm strategy. As a
matter of fact, it could slightly undercut the company 1’s announced cost. His profit will be positive whenever company
1 will manage to set a high price. This means that if company 2 undercuts at price c̄2 − ε for a quantity q2, then his
profit will be slightly negative when d+ UHVDC ≤ Q0+2, but will be quite positive when d ≥ Q0 +2 −UHVDC .

Now, if company 2 he can buy line rights as long as company 1 does not buy them, then another strategy is to buy
all the rights as soon as the northern price is higher than c̄2 + pHVDC , and set the southern price at the northern price,
until company 1 buys the rights. Then, it can simply have a constant announced cost equal to the value it had when it
gave the line rights away.
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5.3 Coalition
The point of this section is not that much about forecasting the behaviour of the companies. The point is more about
illustrating the incentives there are for players not to play in a competitive way.

5.3.1 Two player example
In order to do that, consider the example previously mentioned of two players with infinite capacity to illustrate coalitions.

If the two companies are having a coalition, then the first one could use the second one to reach the northern price.
Company 2 supply function would be a vertical line for a nil production. With an infinitely small number of rights, it
would set the southern price at the northern price and pay almost no line right.

The first company would then simply have an announced cost equal to his real marginal cost. Then he would always
be producing the southern demand. If the northern price is higher than his real cost incremented by line rights price,
then he would buy all of the line rights.

Since this will be the maximum profit the coalition can hope for, it is a Pareto equilibrium. They can then easily
divide their gains so that every one gets more than in the previously described competition allocation.

5.3.2 In general
This is still true as the number of companies grow. One of them can still be used in the single purpose of increasing the
southern price. Although it would then lead to a an efficient distribution, where the most profitable will be chosen to
produce, the consumers of the South Island would be losing a lot, as the prices rise.

However, any company would be tempted to deviate from this Pareto situation, by bidding electricity at an nil
announced cost.

It is important to notice that company 2 has simply sacrificed itself. Yet, if no existing company does what it does,
it would be quite easy for existing companies to create another one that plays that part.

Of course, this would be quite easy to track down, and it is also possible that line rights purchases may be restricted
to the three main companies. Still, with this allocation, there is a real threat to strategic non-competitive behaviours.



Chapter 6

Game on line rights with certain demand

We still consider the pro-rata-with-incremental-output allocation.
If this allocation was established, the distribution of line rights would be a major problem for the System Operator.

Lately, it has been proposed that the allocation of them would rely on an auction. Hence, in addition to the electricity
market, there comes a line rights market.

Those two highly-linked markets lead to a very complicated game problem, as the space of strategies becomes much
larger. In this section, we limit ourselves to the game problem on the line rights market. As a matter of fact, we will
assume that companies simply bids their real marginal costs in the electricity spot market.

6.1 Line rights spot market with a high fixed southern price and non-
strategic players

What will be studied here is some kind of ideal line rights market.

6.1.1 Hypotheses
First, we are going to study a case where companies are non-strategic. The correct allocation prices correspond to how
much companies really value their line rights, according to their announced costs. This means that they represent their
marginal profits.

Companies have bought all of the line rights in the beginning of the year. Yet, now, they can exchange them, at the
price that they settle themselves. These trades can happen every 30 minutes and follow the variations of the demand.
This demand is certain and known by all the agents.

Now, it is actually even easier for companies to adjust their outputs and their rights, so that the northern price is as
high as possible, thanks to a plant which has an actual output almost nil. That’s why, from now on, we will suppose that
the southern price πS may not have reached the northern price, but is definitely higher than the other working plants.
Another explanation of this would be the absence of market power, possibly due to a high number of competitors.

6.1.2 Line rights exchanges
Thus, as the southern price is fixed, the incremental profits due to a plant are pro rata with its outputs. Therefore,
every plant just wants to produce, and the optimal announced costs are the real marginal costs.

Consequently, the values attributed to the line rights by a company are the marginal profit πS − c̄i, where i is the
company’s cheapest plant not working at full capacity. Companies are ready to buy line rights if the clearing price of a
line rights is less than πS − c̄i, and they are willing to sell line rights if the clearing price is higher.

The supply (resp. demand) function can be obtained by plotting the aggregated marginal profits of plants which
possess (resp. do not possess) the line rights. As the two curves are step function, they will probably not actually meet.
Therefore, although the quantity of exchanged rights can easily be read, there is only a range of values of the clearing
price that can be deducted by these functions.

Note, that given the clearing price, incremental profits due to line rights exchanges are the colored rectangles of the
supply and demand graph.
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Figure 6.1: Supply and demand of line rights

6.1.3 Equivalent linear program
Let us observe that this line rights allocation is also the result of a linear program, as the following theorem states.

Theorem 8. Suppose that the dispatch without line trades is x0 and consider the following linear program :

max p · x− p · y

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p = πS − c̄∑
xi =

∑
yj

xi ≥ 0;xi + x0
i ≤ Qi

yj ≥ 0; yj ≤ x0
i

∀Cie k,
∑

j of Cie k

yj ≤ Rights of Cie k

The optimal solution of the linear program gives the line rights purchases x, and the line rights sells y. The dual variable
of the second constraint is in the range of admissible clearing prices.

Thanks to this linear program, negotiations in the spot market or transactions made by the System Operator can
be done quickly and easily.

6.1.4 Result
Anyway, no matter how the clearing price is chosen among the admissible clearing prices, the exchange of line rights is
the same and leads to the following figure.

The very dark areas are the incremental profits due to line rights exchange. Hatched areas are line rights expenditures,
but also profits made, hence they count like nil.

Notice that the spot market of line rights leads to an almost efficient dispatch. Yet, recall that we have made the
hypothesis that the southern price was fixed and high. Hence, this case is not an actual likely case.

6.2 General game with line capacity constraint and certain demand
In this section, we will study the line rights auction with strategic players. For a major part of this section, we will not
make any assumption about the certainty on demand or the capacity of the HVDC line and try to remain general. Only
subsections 6.2.4, 6.2.6 and 6.2.7 deal with HVDC line capacity.
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Figure 6.2: Line rights trades in a spot market

6.2.1 Hypotheses
Once again, we will assume that companies announce their real marginal costs. Moreover, in order to avoid problems of
discontinuity, we will suppose that the number of plants is so high, that the marginal cost functions can be approached
by a continuous and regular function.

As the dispatch for the South Island is now fixed, we will only consider the remaining cost functions after that
dispatch. Each company has a marginal cost function ck(rk). Its profits actually only depend on the price set by the
other companies and its own output. There, it can be written Πp

k(rk), where p is the cost set by the others and can be
written max

j �=k
cj . We will note the marginal profit ρpk(rk) = [Πp

k]
′(rk).

Now, given these cost functions, each company has now to give bids for line rights, that will lead to a clearing price,
and a line rights allocation.

6.2.2 Three main situations
The following graph shows a typical marginal cost function.

Figure 6.3: A typical marginal cost function

Examples are representated by the dotted red lines. Colored areas are profits. The spot price of the electricity in
the South Island is always πS = max

Cie j
cj(rj), where j corresponds to companies of the South Island. It is important to

differentiate 3 parts in this graph, delimited in dotted blue.
First, when ck(rk) ≤ max

j �=k
cj(rj), the profits of company 1 are the bright yellow area. The spot price of the electricity

is the price max
j �=k

cj(rj) set by the other companies. The marginal profit here is positive, since it is ρmax cj

k = max
j �=k

cj(rj)−
ck(rk).
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Second, when max
j �=k

cj(rj) ≤ ck(rk) ≤ πN , company 1 is the one who actually sets the price. The profits are the yellow

and pink areas. The marginal profit can be written ρmax cj

k = rkc
′
k(rk), which is positive and increasing if ck is convex.

Third, when ck(rk) > πN , price can no longer increase, nor can the output. Line rights are useless, since marginal
profit is nil. Profits are the area under price πN and above the marginal cost curve. It is definitely a situation to avoid.

6.2.3 Profits
Let us now have a look at the profits. The following figure shows the profits for several values of the maximum marginal
cost of the rivals, the blue being when max

j �=k
cj = πN .

Figure 6.4: Profit curves

As we can see, the curve can be separated in the 3 sections previously described. Now, if the prices of the line rights
were nil and if there were no constraint on the maximum capacity of the line, then the best reply of company k to the
costs cj of the rivals is the maximum of the curve Πmax cj

k . This maximum is reached at rk = c−1
k (πN ).

Notice that when the price set by the rivals is πN , like on the blue curve, the second section of the curve has
disappeared.

6.2.4 Two main strategies
Observe a fundamental fact. Companies can either take advantage of the price set by their rivals, or they can set the
price. The higher is the price set by the rivals, the more incentives the company will have to take advantage of it, instead
of fighting for line rights. But if the price set by the rivals is low, it may be better to choose to set the price itself.

Now, if all the companies can reach their maximum profit without congesting the line, which means that
∑

c−1
k (πN ) ≤

UHVDC , then we have Nash Equilibria r = (rk) with a line price equal to zero when ∀k, rk ≥ c−1
k (πN ) and

∑
rk ≤

UHVDC .
However, we can assume that the number of players is high enough so that the second condition we mentionned

cannot be met. Therefore, companies may fight for line rights, which will set it strictly positive. In fact, their marginal
profit is how much they are willing to pay to have an incremental unit of line rights.

6.2.5 Marginal profits
Therefore, in order to have a better understanding of those strategies, we may have a look at the marginal profits. The
corresponding figure is figure 6.5, where are drawn the marginal profits corresponding to the profits of figure 6.4.

Now, the discontinuities in this graph cause troubles for the allocation of the line rights. Basically, they can either
bid for the first part of these curves, which means that they are counting on another company to increase the price, in
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Figure 6.5: Marginal profit curves

which case they have a decreasing bid. Or they can be the one who set the price high, by the second part of the curve.
In this case, they would directly bid for c−1

k (πN ), because the marginal profit is higher at this point.

6.2.6 First strategy
We are now going to assume that the northern price cannot be reached because of the line capacity. Let us consider a
company k, and suppose it will bid the first part of the curves, which means that it counts on another company to set
the price high. Then, it will have to maximize the orange area in the following figure.

Figure 6.6: Best reply curve when taking advantage of a higher set price

The yellow area is the cost of the line, while the pink area is the cost of the output.
The output that company k chooses corresponds to a point on the cumulated bidding curve of its rivals (green curve),

which gives the line price. It also corresponds to an electricity price set by the rivals (red curve). This electricity price
defines the marginal profit curve of company k (blue curve). Eventually, we can read the actual profit of company k,
since it is the orange area.
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6.2.7 Second strategy
The company has another option, which is to bid for the second part of the curve. But, the increase of this curve means
that he would rather buy all the line rights than some of them, no matter what the price is, as long as his profit remains

positive. If it does not, then he would buy nothing. This limit price is πlimk = ck(UHVDC)UHVDC −
∫ UHV DC

0

ck.

Still, the System Operator may require that the bids are decreasing curves, in order to have a fair dispatch. The
following graph shows the bid the company wishes it could announce (green curve), and the bid it would have to
announce (red curve).

Figure 6.7: Optimal curves when fixing the price

Now, it is important to notice that either one company takes advantage of the price set by other companies and shares
the line (sharing strategy S), or bid for the whole line rights at line price p while setting the price itself (monopolistic
strategy M(p)).

6.2.8 Mixture of the two strategies
Notice that the first strategy plays on a low quantity and the second on a high quantity. We can imagine that companies
mix these two strategies with a curve that, in the first part, plays the first strategy, and then plays the second strategy.

6.3 Symmetric duopoly example with line capacity constraint and certain
demand

Let us illustrate that with a two player example, where marginal costs are identical linear functions c(x) = cx. Note
that c is the second derivative of the total cost. For clarity of explanation, we will note UHVDC = U .

6.3.1 Best response to a monopolistic strategy
If a company tries strategy M(p), then its bidding curve is the red curve, where the maximum price of purchase p can

be chosen in the range [0,
1
2
cU ]. If it succeeds in buying the whole line, which happens when he plays against M(p0)

with p0 < p, then its profit will be Πmax
M(p) =

1
2
cU2 − pU . If p0 = p, then we will assume that the two companies share

the total amount of rights and get U/2 each. Their profit will be ΠM(p)(M(p)) =
1
8
cU2 − 1

2
pU =

U

8
(cU − 4p).

However, a company can also guess that the other company will choose strategy M(p) and bid the red curve. Hence,
it may want to try to take advantage of the high set price. He would use strategy S, accordingly to figure 6.6. Therefore,
he chooses a point (r, p) so that (U − r, p) is on the red curve of the other company. Then, his profit can be written

ΠS(r,M(p)) = (cU − p)r − 3
2
cr2. The maximum of this function is reached when r =

cU − p

3c
, which means that

p = c(U − 3r). This is the bidding curve of strategy S. His profit, as a function of p is now ΠS(M(p)) =
1
6
(cU − p)2.

The following curve now shows the profits of strategies S, M(p1) and M(p2) (with p1 < p2) when playing against
M(p0).
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Figure 6.8: Profits of different strategies against M(p0)

6.3.2 Best response to a sharing strategy
Now, let us have a look at the best replies to strategy S. If the other company plays S, then the first company needs to
choose a point of the bidding curve such that its profit will then be maximized. Since it only has to choose one point,
there is an infinity of bidding curves solution. These curves only need to intersect the bidding curve S of the rival on
the chosen point.

Assuming that if the company plays S against S, each company will be given
1
2
cU . The profit will be ΠS(S) =

1
8
cU2.

Now, if the company plays M(p) against S, then its output would be r =
2U
3

+
p

3c
. Thus, its profit would be

ΠM(p)(S) =
1
2
cr2 − pr =

1
18c

(2cU + p)(2cU − 5p). The following graph shows the profits.

Figure 6.9: Profits of different strategies against S

Note that the profit is negative when a company sets a high line price against strategy S.

6.3.3 Strategies S(p)

Now, we will introduce the strategies S(p) which bidding curves are S for prices higher than p, and equal to p for higher
demands. S(p + ε) is one of the best reply to M(p), and is a best reply to S(p) when p is low enough. Therefore, we
will now suppose that companies only play curves S(p). The game is illustrated by figure 6.10.

Their profits can be read on figure 6.11.
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Figure 6.10: Profits ΠS(p1)(S(p2)) of strategies S(p1) against S(p2)

Figure 6.11: Profits ΠS(p1)(S(p2)) of strategies S(p1) against S(p2)

Notice that playing S(p) with p ≥ pmax is always less profitable than playing any S(p) with p ≤ pmax. Moreover,
note that the best reply to S(p) with p < pmax is S(p + ε). However, S(pmax) is a bad reply to S(pmax) because
companies would have to share the line at high cost.

6.3.4 Nash Equilibria
We now have the two following results corresponding to the intersection of the red dashed curve and the blue curve of
figure 6.11.

Theorem 9. If the prices are continuous, then the situation where both companies choose randomly a strategy S(p) with
p ∈ [pmax − ε, pmax] are ε-equilibrium in mixed strategies.

Theorem 10. If the prices are not continuous, then we have the highest price less than pmax. Call it pmax − ε. Then
the strategies (S(pmax), S(pmax) − ε) and (S(pmax) − ε, S(pmax)) are Nash Equilibria.

In both cases, despite we have first constrained the strategies to be S(p) strategies, these are actual ε-equilibrium
and Nash Equilibrium. As a matter of fact, given the curve S(p) of its rival, the set of the best replies of a company
are the set of decreasing functions that contains one of the points (q1, p1) ∈ S, where S is the set of points on the rival’s
bidding curve that maximize the profit of our company. But if the rival plays S(p), then S is (approximatively in the
continuous case) the actual set of possible dispatches of our equilibria.

6.3.5 Mixture
Let us now look for Nash Equilibria in mixed strategies. In order to do that, we will consider the distribution fk :
[0, pmax] → IR+ of values of p corresponding to strategies S(p) for company k ∈ {1, 2}. We have the constraint

∀k,
∫ cU

0

fk = 1.
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Now, each company wants to maximize its profit. For company 1, we have

Π1(f1, f2) =
∫ pmax

0

ΠS(p1)(S(p2))f1(p1)f2(p2)dp1dp2

Now, a Nash equilibrium in mixed strategy would be a value of (f1, f2) so that f1 ∈ Argmax Π1(f1, f2) and f2 ∈
Argmax Π2(f1, f2). Thus, we need to have

Supp f1 ⊂ Argmaxp1

∫ pmax

0

ΠS(p1)(S(p2))f2(p2)dp2

Since ΠS(p1)(S(p2)) is a piecewise polynomial of the second degree, the condition of maximality leads after derivation
and integration by parts to a differential equation of the second order, with two primitives of f2. As the equations are
quite complicated, we will not write them here.

I have not been able to determine the existence of such equilibria. However, we can say that if there is such an
equilibrium, then the expected incomes of the companies will be higher than in the previously mentionned equilibrium
in mixed strategy, as profits are always higher, as displayed on figure 6.9.

6.3.6 Conclusion
The following theorem sums up the study of this section.

Theorem 11. Nash equilibria in pure strategy are blue points. Equilibria in mixed strategy restricted to M(p) and S(p)
strategies are necessarily mixture of S(p) strategies, that lead to distributions of the yellow lines and the blue points.

Figure 6.12: Equilibria



Chapter 7

Game on line rights with uncertain demand

We still consider the pro-rata-with-incremental-output allocation. This time, demand is random with a known probability
distribution.

7.1 Generalities about supply function equilibria with uncertain demand
In this section, we are going to use the principles of Supply Function Equilibrium introduced in [3], and the methods
presented in [1], in order to study the existence of Nash Equilibria.

7.1.1 Assumptions and notations
We are now supposing that we have a duopoly, where companies 1 and 2 have to announce positive decreasing bidding
curves. Depending on the value of the demand h and on these curves, the System Operator then choose a clearing line
rights price p∗, so that the outputs associated to this line rights price in the bidding curves may fulfill the demand.

Note that the demand is uncertain. However, it has a cumulative distribution function F , known by all the agents
of the market.

Suppose company 2 has a bidding curve s(p). We are now going to look for the best reply to such a curve. In order
to do that, we will consider a parametrized curve (q(t), p(t)) for t ∈ [0, T ].

Now, suppose that the dispatch of company 1 is [q, q + dq] × [p, p + dp]. That means, that the clearing price is in
[p, p+dp], which means that company 2’s dispatch is in [s(p), s(p)+s′(p)dp] with an approximation at first order. Thus,
demand is in [q+s(p), q+s(p)+dq+s′(p)dp] = [h, h+dh]. Hence, the deviation of demand corresponding to a deviation
(dq, dp) is dh = dq + s′(p)dp.

Let ψ(q, p) = Pr(d < q + s(p)) = F (q + s(p)). Then the probability that [q, q + dq] × [p, p+ dp] is dispatched is

dψ = F (q + s(p) + dh) − F (q + s(p))
= F ′(q + s(p))dh
= (dq + s′(p)dp)F ′(q + s(p))

If (q, p) is dispatched, then the profits of company 1 regardless to line rights costs is Π(q, p). Note that in plenty of
cases this profit does not depend on p, since p is just a clearing price of the line rights and does not interfere with the
main market of company 1. Yet, in this case, it actually affects the output of company 2, which affects the electricity
price, hence affects the profits of company 1.

If we now consider the line rights costs, the global profit of company 1 when (q, p) is dispatched is R(q, p) =
Π(q, p) − pq. The global expected profit can now be calculated given the demand distribution and bidding curve
Γ = {(q(t), p(t)), t ∈ [0, T ]} :

IE[R] =
∫

Γ

R(q, p)dψ(q, p)

34
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7.1.2 The function Z

In order to maximize the expected profit, Anderson and Philpott have introduced in [1] the following function :

Z(q, p) = Rqψp −Rpψq

where the partial derivative of a function f by some variable x is noted fx. Thanks to Green’s Theorem in the plane,
we have the following theorem.

Theorem 12. Let γ be a loop curve, and S the delimited area, counted positive if γ goes in an anticlockwise direction.
Then, ∫∫

S
Z(q, p)dqdp =

∫
γ

R(q, p)dψ(q, p)

Proof. Let G = Rψp and H = Rψq. Then

Gq −Hp = R
∂2ψ

∂q∂p
+Rqψp −R

∂2ψ

∂q∂p
−Rpψq

= Rqψp −Rpψq = Z

Therefore, applying Green’s Theorem,∫∫
S
Zdpdq =

∫∫
S
(Gq −Hp)dqdp =

∫
γ

Hdq +Gdp

=
∫
γ

Rψqdq +Rψpdp =
∫
γ

Rdψ

Hence the theorem.

7.1.3 Utilisation of Z through an example
Thanks to this theorem, we now have a method with other theorems to use. However, because those theorems are quite
complicated to formulate, we will just show them through an example.

Consider the following figure.

Figure 7.1: Example of a Z function

The yellow areas are where Z < 0, the pink areas where Z > 0 and the red curves are where Z = 0 but dψ �= 0.
Now, the company has to choose a bidding curve γ. This curve necessarily goes from the area F = 0 to the area F = 1.
Its value inside those areas will not affect its expected profit, as there is no distribution of demand for him there.
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Notice that we can complete the curve γ with some curve like δ, which satisfies dψ|δ = 0, so that γ ∪ δ is the contour
of an area S. We can now apply the previous theorem. Thus,∫

γ

Rdψ =
∫
γ

Rdψ +
∫
δ

Rdψ︸ ︷︷ ︸
nilas dψ|δ=0

=
∫
γ∪δ

Rdψ = −
∫∫

S
Z

This value is represented by the darker areas in the figure.
Note the negative sign due to the anticlockwise direction of γ ∪ δ. Therefore, the problem is to find a curve under

which the yellow areas minus the pink areas will be the highest.
Given like that, the problem is not well written. As a matter of fact a curve with anticlockwise loops in the yellow

area or clockwise loops in the pink area would have an expected value associated to this curve as high as we want.

7.1.4 Shape of solutions with the curve being a function constraint
Therefore, we will add constraints. The curve we are looking for must be continuously parametrized (q(t), p(t)) for
t ∈ [0, T ], with q(t) increasing. This means that it has to go from the left to the right. Moreover, if q(t) is stationnary
in an interval, then p(t) must be monotone in this interval too.

Theorem 13. In this example and with these constraints, the solution is necessarily a sequence of those two kinds of
curve :

• The bright blue curves : defined by Z(q, p) = 0, with a pink area right above, and a yellow one just below.

• The dark blue lines : defined as vertical lines crossing pink and yellow areas, for which the integral of Z along it
is nil. The area on top must be yellow, the one in the bottom must be pink.

Figure 7.2: Solutions of the bidding curve problem

Proof. Suppose γ is an admissible curve with a point where Z < 0. By continuity, there is a portion of γ around this
point where Z < 0.

Suppose also that the curve is not vertical in this area. Then, consider a loop δ that coincides with γ along this
portion but goes in the opposite direction, and then turns back in a clockwise direction while remaining in the yellow
area, as shown in figure 7.3.

In this figure, γ is blue and orange, whereas δ is green and orange. Now, γ∪δ is an admissible curve, as their common

portion delete themselves. Yet, since δ is a clockwise loop in the yellow area,
∫
δ

Rdψ > 0. Hence,
∫
γ∪δ

Rdψ >

∫
γ

Rdψ,

which shows that γ is not an optimal solution.
A similar proof with an anticlockwise loop would show that an optimal solution cannot have a point where Z > 0.

Thus, a solution is necessarily included in Z−1(0).
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Figure 7.3: Non-optimality of γ

Now, if a yellow area is right above a curve (resp. a pink area right below), then we can still use the same reasoning
to show that this curve cannot be optimal.

We have almost proved the result. Yet, the optimal curve may cross pink and yellow areas, but this would be with
a vertical line. Moreover, the upper limit has to be a point of a light blue curve, or of a green one, since, otherwise the
previous section of the curve could be dealt with as we previously did with non-vertical curves. It is the same for the
lower limit.

Yet, note that if we move the vertical curve whose absciss is q to an absciss q + dq. The intersections (q1, p1)
and (q2, p2) (with p1 < p2) of this line with the light blue curves will also move. In our example, this displacement
is continuous. Therefore, if the vertical line is run from up to down, then the variation of the integral due to this

displacement will be −dq
∫ p2

p1

Z(q, p)dp at first order. If the line is run from down to up, then it is the opposite value.

The condition of optimality now leads to
∫ p2

p1

Z(q, p)dp = 0, which is the last thing we needed to prove our result.

Then, depending on the sign of the integral of Z in the areas delimited by those blue lines (and the green ones), we
can determine which combination of blue lines will maximize the integral of Z under the curve, which is the solution of
our expected profit maximizing problem.

7.1.5 Actual solution with the curve being a function constraint
In order to find the right combination of those curves, we should have a look at the sign of the integrals of Z in areas
delimited by blue and green lines. This is displayed by the following figure, where the positive areas are painted in pink,
and the negative ones in yellow.

Figure 7.4: Solution of the bidding curve problem

Recall that the integral of Z over the whole area is the opposite of the expected profit. Therefore, we want to
encompass as much yellow area as possible. Hence, the solution is the dashed red curve.

Note that the vertical lines can now be oriented, depending on the colour of the area on their left..
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7.1.6 Bidding curve problem
Yet, in order to organize an auction, the System Operator may force the companies to bid decreasing curve. It means
that we are still looking for a parametrized curve with q(t) increasing, but, now, p(t) has to be decreasing.

Although the lower blue curve remains admissible, the higher one is not. Yet, it is possible to modify it slightly to
get it admissible.

The use of Z gets more complicated, as the next subsection will show, despite the following result.

Theorem 14. The solution is necessary a succession of decreasing light blue curve, vertical and horizontal line. Hori-
zontal (resp. vertical) lines must begin in a pink (resp. yellow) area or a light blue line, and it must end in yellow (resp.

pink) areas or a light blue line. The vertical and horizontal sections necessary satisfy
∫

line

Z = 0.

Proof. The same reasoning as previously applies to curves not horizontal nor vertical. Hence the first sentence of the
theorem.

If a horizontal or a vertical section links two blue or green lines, then we can use the same reasoning as previously

to prove the necessity that
∫

line

Z = 0.

If it does not, then it means we have a succession of a horizontal and a vertical curve. Suppose we have first the
horizontal and then the vertical curve. Consider (q, p) the point where the two lines meet. If this point is in pink area,
then the expected revenue can be improved by the following dark dashed line.

Figure 7.5: Reason why (q, p) needs to be in a yellow area

A similar explanation justifies that a succession of a vertical then a horizontal line needs to cannot occur in a yellow
area. We have just proved the second sentence of the theorem.

By continuity of Z, as the horizontal line starts in a yellow area from a vertical line or on a light blue line, we can
move slightly the horizontal line up or down with it still satisfying the two first conditions, and add or withdraw a little
part of the following vertical line. In fact, by doing that, we obtain a new admissible curve. By displacing the horizontal

section from p to p+ dp, we add to the expected profit the value dp
∫
horizontal line

Z. We can do the same reasoning for

the vertical part.
In fact, as we consider the set of curves with slight displacements of both the vertical and the horizontal sections,

we can write the expected profit as a function of the meeting point (q, p). If our curve is solution, it means that it
maximizes the expected profit among all the decreasing positive bids, hence, in particular, among all those curves.

Necessarily, the differential of the expected profit by (q, p) needs to be nil, which means for both the vertical and the

horizontal lines
∫
line

Z = 0. Hence the third and last sentence of our theorem.

Despite this theorem, solutions remain difficult to characterize. In our example, let us introduce the horizontal

orange line drawn on figure 7.6, and for which we have
∫

line

Z = 0. Supposing that this is the only horizontal line that

satisfies the condition of the previous theorem, the optimal bidding curve is a composition of blue and orange lines.
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Figure 7.6: Components of the solution of the bidding curve problem

There are three local maxima now that we have to compare to find the global maximum of our problem. These three
curves are represented in the figure 7.7. The first curve is the light blue then dark blue curve. The second is the green
then purple then dark blue curve. The third is the green then orange curve.

Figure 7.7: Solutions of the bidding curve problem

7.1.7 Difficulties of the utilisation of Z

Let us look at a tricky case, where horizontal and vertical sections meet in a yellow area. We may assume here that in
the yellow area Z = −1, whereas in the pink area Z = 1. The case is represented on figure 7.8.

The blue (resp. green) dashed line is the the set of points from which a vertical (resp. horizontal) line that satisfies∫
curve

Z = 0 can be drawn.

Their intersection leads to a point, for which both vertical and horizontal lines satisfy the constraint. Since it is the
only one with that property, the orange then purple curve is necessarily the optimum.

7.1.8 Example
In this part, we will show simple examples, where the usage of Z enables a simple resolution. Supp F ′ is assumed to be
[0, 1].
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Figure 7.8: Tricky case

Linear profit function

If s(q) = a− q and Π(q) = q, then the optimal reponse is the curve defined by

p+ q − 1 = 0

which gives a decreasing linear curve, positive for (p, q) ∈ Supp dψ.
If a = 1, then we have a symmetric Nash Equilibrium.

Quadratic profit function

Suppose s(q) = a− bq and Π(q) = kq − q2. Then

Z(q, p) = bp+ q − k + 2q
= 0

Then the optimal reponse is the curve defined by

p = k/b− 3q/b

If b =
√

3 and a = k/
√

3, then we have a symmetric Nash Equilibrium. Note that if k is not high enough then these bids
can be negative, which would not correspond to auctions. In fact when k ≤ 3, this method does not lead to admissible
curves. Yet, if 3/2 ≤ k ≤ 3, then curves defined by

p =
{
k/b− 3q/b, q < 1/2
0, q ≥ 1/2

are Nash Equilibria.

7.2 Application to the line rights market with high fixed electricity price
We are now going to apply this Z function to the study of the HVDC line rights market, in a simplified case where
southern electricity spot prices are supposed to be fixed and high.

7.2.1 The Z function
In order to keep it simple, we will assume that the price π is given by northern generators and that southern generators
cannot affect it. Moreover, marginal costs will be linear, equal to q.
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Then the profit can be written Π(q, p) = πq − q2/2. Then, R(q, p) = πq − q2/2 − pq. Hence,

Z(q, p) = Rqψp −Rpψq = [(π − q − p)s′(p) + q]F ′(q + s(p)).

When F ′(q + s(p)) �= 0, we have

Z = 0 ⇔ q =
−s′(p)(π − p)

1 − s′(p)

Note that if s is convex and decreasing, then −s′ is a positive decreasing function. Hence,
−s′(p)

1 − s′(p)
is positive

decreasing too, as well as π − p if p < π (which is necessarily true when profit is non-negative). Therefore, Z = 0
corresponds to a positive decreasing curve.

7.2.2 Symmetric Nash Equilibrium
Let us now look for a symmetric Nash Equilibrium. In this case, necessarily, s(p) = q(p), which implies that the curve
q(p) must be a solution of the differential equation y′ = − y

π − y − x
. The inverse equation for x(y) is

x′ = −π − x− y

y

x′ − x

y
= −π − y

y

x′

y
− x

y2
= −π − y

y2

(x
y

)′ = − π

y2
+

1
y

x

y
=
π

y
+ log y + α

x = π + y log y + αy

Note that p̃α(q) = π + q log q + αq is a decreasing curve, as long as q ≤ e−1−α. Suppose Supp F ′ =]0, 1[.

Theorem 15. For α ∈ [−2π + log 2,−1 + log 2], bidding curves equal to pα in [0, 1/2] and horizontal equal to pα(1/2)
in [1/2, 1] form symmetric Nash Equilibria.

Proof. Note that those curves are decreasing positive functions. Hence they are admissible.
If the opponent plays such a curve, then, as Z is a function defined locally, the curve Z = 0 for q < 1/2 is p̃α. Under

it and above the line p = pα(1/2), we have Z < 0. Under the line, Z = 0. Above pα, Z > 0. When q > 1/2, we have
Z = 0 under the curve 1− pα, and Z > 0 above it. The optimal response needs to be a curve pα in [0, 1/2], but there is
no constraint except being decreasing and positive in [1/2, 1].

Hence the curve of this opponent is one of the best response, which means that we have a Nash Equilibrium.

7.2.3 Profits
Because we are looking for symmetric Nash Equilibria, the companies will always dispatch half of the total demand.
Hence, their profits are equal and are

IE[R] =
∫ 1

0

(
π
h

2
− h2

8
− p̃α(

h

2
)
h

2
)
F ′(h)dh.

As p̃α is obviously an increasing function of α, the expected is a decreasing function of it. In fact, the expected

profit can be written IE[R] = R0 − α
IE[h2]

4
, where h is the total demand random variable and where R0 is a constant

independent from α.
Note that the best Nash Equilibrium for companies requires α to be as low as possible, hence α = −2π+ log 2. This

condition also means that the bid for the purchase of half of line rights is 0.
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7.2.4 Asymmetric marginal costs
Let us now consider an asymmetric case, where marginal costs are c1(q) = c1q and c2(q) = c2q. If bids at equilibrium
are s1 and s2, then we have the following differential equation.

⎧⎨
⎩

s′1 = − s2
π − p− c2s2

s′2 = − s1
π − p− c1s1

In order to solve this system we follow the approach of Anderson and Hu [?]. We divide [0, 1] into n equally long
sections, and we define the 4(n + 1) values of s1, s′1, s2 and s′2 at each extremity of the sections. Add the relations
corresponding to the differential equations. Also add the constraints that, for each section, tangents of each extremity
must meet between the extrimity. Add s1(0) = s2(0) = π.

We now have nonlinear programming problem that can be solved by GAMS/CONOPT (the source code is provided
in Appendix 1). The solution is plotted in fugure 7.9.

Figure 7.9: Nash Equilibrium in an asymmetric case

Here we have π = 3, c1 = 1 and c2 = 5. The same reasoning as theorem 15 proves that these curves form a Nash
Equilibrium as long as the first bids at line price 0 have a sum equal to 1.

7.2.5 Efficiency
It is interesting to look at the efficiency of such a dispatch. An efficient dispatch needs to satisfy c1q1 = c2q2, which
means that q1/q2 = c2/c1 = 5. However, the value of q1/q2 remains close to 1, 3, which means that the dispatch is not
efficient.

In an efficient dispatch, when demand is h, the dispatches are q1 = 5h/6 and q2 = h/6. And the global cost is
c1q1 + c2q2 = 10h/6. Here, however, as q1 ≈ 1.3q2, we have q1 = 1.3h/2.3 and q2 = h/2.3. Hence the global cost is
c1q1+c2q2 = (1.3+5)h/2.3 = 6.3h/2.3. The global efficiency has been multiplied by (6.3/2.3)/(10/6) ≈ 1.6. Numerically,
we have found 1.625.

The effect of the auction is to bring closer the dispatches of the two companies.

7.2.6 Oligoply
Suppose that there are more companies k ∈ K with marginal costs (ck)k∈K . Then the differential equation for the bids
(sk)k∈K can be written

∀k,
∑
j �=k

s′j = − sk
π − p− cksk

.
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This equation can be written As = F (s), where A = 1K − IK , with 1K the matrix equal to 1 everywhere and IK

the identity matrix, and (F (s))k = − sk
π − p− cksk

. But A is invertible, and A−1 =
1

n− 1
(1K − (n − 1)IK). Hence,

s′ = A−1F (s).
A similar computation as above can be used to solve this equation.

7.3 Real electricity price fixing system
The previous part dealt with a simplified model where electricity spot price was constant and independent of the line
rights auction. However, this is not how things work. Although the problem is difficult, we are now going to study what
happens where the price actually depends on the dispatches.

7.3.1 Equations
Suppose that Π(q) is determined by the real price fixing system. Suppose player 1 has cost C1(q) and player 2 has
cost C2(q). Suppose also that Player 2 bids the positive decreasing curve s(p). Thus if Player 1 bids (q, p) and
C ′

1(q) < C ′
2(s(p)), then Player 2 sets the energy price. Otherwise Player 1 sets the energy price. Thus,

Π(q, p) =
{
qC ′

2(s(p)) − C1(q), C ′(q) < C ′(s(p))
qC ′

1(q) − C1(q), C ′(q) ≥ C ′(s(p))

Suppose C1(q) = C2(q) =
q2

2
. Then

Π(q, p) =
{
qs(p) − q2/2, q < s(p−)
q2/2, q > s(p+)

Notice that there is a case with horizontal sections that we did not write down.
The Z function can now be evaluated as follows.

Z = Rqψp −Rpψq =
(
(Πq − p) s′ − (Πp − q)

)
F ′

=
{
Z1 = [(−s′)(p+ 2q − s) + q]F ′, q < s(p)
Z2 = [(−s′)(p− q) + q]F ′, q > s(p)

Now, we can notice these important functions q of p.

Z1 = 0 and (q, p) /∈ Supp dψ ⇔ q =
(−s′)(s− p)
1 + 2 × (−s′)

Z2 = 0 and (q, p) /∈ Supp dψ ⇔ q =
(−s′)p

(−s′) − 1

7.3.2 Values of the Z function
Notice that s is decreasing, thus s− p is decreasing too. Suppose that −s′ is not too much increasing (s not too much

concave), then
(−s′)(s− p)
1 + 2 × (−s′) may be decreasing.

If (−s′) ≤ 1, then the curve corresponding to Z2 is not admissible. Otherwise,
(−s′)

(−s′) − 1
is higher than 1, and,

supposing that s convex, we have (−s′) decreasing. Hence, we may assume that when p gets low,
(−s′)

(−s′) − 1
is close to

1. This would mean that curve q = p is an asymptote to q =
(−s′)p

(−s′) − 1
.

The yellow area is a part where F ′(q, p) is nil. The pink area is where the second players sets the price. The orange
area corresponds to a pricing by the first player. Darker areas correspond to Z < 0. The two red curves are Z = 0 lines.
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Figure 7.10: Plot of Z(p, q)

7.3.3 Strategies
There are two kinds of strategies. On the one hand, the company can try to take advantage of the high price set by the
other company. If it does that, it would bid the lower red curve. Then, in the yellow area, it can bid any decreasing
curve. It won’t matter since this part of the curve won’t be used for the choice of the allocation.

On the other hand the company can try to set the price itself, and bid accordingly to the higher red curve. Yet,
because of the decreasing constraint, its optimal solution will be a horizontal linear curve, like the blue one. As a matter
of fact, when Z < 0, we would want the curve to be lower, but it cannot be lower than its value in the area Z > 0,
because it comes before. Similarly, when Z > 0, we would want the curve to be higher but it cannot be.

Among all the horizontal curves, the best one will be the one that leads to
∫
curve

Z = 0. If none of them manage to

do that, then this would mean that they all have positive values. Hence, they are all worse than bidding nothing.

7.3.4 Symmetric Nash Equilibria
Now, let us look for Nash Equilibria in pure strategies. In a symmetric Nash equilibrium, both players would bid the
same decreasing bidding curve s(p). Thus, we would have either Z1(s(p), p) = 0 or Z2(s(p), p) = 0. In both cases, these
equations lead to differential equations for s :

s′ =
s

s± p

As we inverte s to obtain p(q), we have the equation p′ − p

q
= ±1, which, for q > 0, is equivalent to

(p
q

)′ = ±1
q
.

Then, we have p(q) = ±q log q + αq.
Notice that if we consider Z1 = 0, then it is a positive sign, which means that the bid is necessarily negative for low

value of q, and increasing later, which is not acceptable. Yet, if the sign is negative, then the bid is necessarily increasing
at first.

Anyway, it seems weird to consider two players whose strategies are the same. As a matter of fact, we have just
studied cases where they both want to be the one who set the electricity price, or they both want the other to set
the price. In the end, because of the symmetry, they just share the line. Although the dispatch is efficient, the two
companies actually set the price very low, which is not in their best interest.

7.3.5 Asymmetric Nash Equilibria
Therefore, we may look into the case where company 2 tries to set a high electricity price, whereas company 1 tries to
take advantage of it. This means that they have different bidding curves s1 ≤ s2, and we have the following differential
equations :
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⎧⎨
⎩

s′1 =
s2

2s2 − s1 + p

s′2 =
s1

p− s1

But, once again, for (s1, s2) to be a solution of our problem, we need to have 0 < s1 ≤ s2, and this implies s′1 > 0.
Thus, s1 is increasing and is not a bid function.

In fact, figure 7.10 shows that there cannot be any Nash Equilibrium pair of curves without a horizontal section. As
a matter of fact, the best response to a decreasing curve is necessarily either a strictly lesser one (the lower red curve)
or a horizontal curve.

7.3.6 Mixtures
But then, we have an overcutting problem among horizontal curves, which has no Nash Equilibrium in pure strategies.
The solution of such a problem becomes a solution in mixed strategies, where the companies will alternatively take a
large possession of the line rights. Efficiency will not be reached.

The problem in mixed strategy here is very difficult. When price is low, the best response to a horizontal line is a
horizontal line a little bit higher. But when price is high, it is a piecewise curve, first a little bit higher until a certain
output after which the curve’s only constraint is to be lower. As opposed to the study we did with no uncertainty on
demand, there is no curve that is a best response to all the horizontal bids.



Chapter 8

A pro rata with incremental benefit
allocation

As we have seen, the current allocation and the pro rata with incremental output are not satisfactory. Therefore, we
will now propose another allocation system.

8.1 Description of the allocation
The idea of this system is to guarantee efficiency and fairness. In order to do that, we will simply impose the dispatch,
so that no game on line rights can happen, which will enable better efficiency. Moreover, our idea of fairness is that
companies who take advantage of the line should be the ones who pay for it. Yet, a company’s goal is to maximize
its profit. That’s why we have come up with a tax pro rata with incremental benefits due to the HVDC line. These
incremental benefits are the difference between the benefits with a line, and the benefits had the line been cut.

For every trading period of 30 minutes, an expected demand is estimated, and companies give announced marginal
cost curves (or step functions). Given that, the System Operator calculates the dispatch with the HVDC line, and the
dispatch with the HVDC line cut. He calculates the profits of each company, supposing that they have announced their
real marginal costs. This leads to estimated incremental benefits. Then, each company has the dispatch calculated with
the HVDC line, and pays a tax pro rata with the estimated incremental benefits.

Therefore, the game for each company is now only on the choice of the costs announced for a year. This is the game
we are now going to study.

8.2 Game problem
The case where the System Operator actually knows the real profits leads to a more simple problem. That is why this
is what we will start with.

8.2.1 Supposing that the System Operator knows the real profits
Now, consider a company. It has to choose an electricity bidding curve via the announced marginal cost c(q) that
maximizes its expected profit, given its real marginal cost c̄(q), the aggregated bid of the other companies c̆(q) and a
distribution of the demand f . A solution of this optimization problem is a best reply to the other companies’ bids.

Given a demand and the aggregated bidding curve of the other companies, our company needs to choose an output
q0, that corresponds to a point on the curve c̆(d − q). Let Π0(q0) be the profit related to this output. Similarly, we
define Π1(q1) the profit related to an output q1 on the curve c̆(d+ U − q).

Then, if α is the percentage of tax on incremental profits, the problem for our company is now :

max
q0,q1

Π0(q0) + (1 − α)(Π1(q1) − Π0(q0))

Subject to : q0 ≤ q1 ≤ q0 + U

46



CHAPTER 8. A PRO RATA WITH INCREMENTAL BENEFIT ALLOCATION 47

This problem can also be written as follows :

max
q0,q1

(1 − α)Π1(q1) + αΠ0(q0)

Subject to : q0 ≤ q1 ≤ q0 + U

Yet, the problem of maximizing Π0(q0) (resp. Π1(q1)) with no constraint on q0 (resp. q1) is the one we discussed in
section 3. Suppose we have solved the problem of section 3 and found a solution c∗(q). Then, as shown on the following
figure, the intersections q0 and q1 of this curve with c̆(d− q) and c̆(d+ U − q) obviously satisfy the constraints.

Figure 8.1: Bids in a pro rata with incremental profits allocation

Therefore, (1−α)Π1(q1)+αΠ0(q0) is a reachable upper bound to our objective function, hence (q0, q1) is the solution.
And c∗(q) is the optimal bidding curve for the company. Hence the following theorem.

Theorem 16. Nash Equilibria of the problem discussed in 3.2. are Nash Equilibria of this problem too.

8.2.2 The System Operator estimates incremental profits
In this model the System Operator estimates profits from the announced costs. The difference is that the bright pink
area, located between q0 and q1 and delimited by the curves c̄ and c is not taxed. The maximization problem has become
:

max
q0,q1

(1 − α)Π1(q1) + αΠ0(q0) + α

∫ q1

q0
(c− c̄)

Subject to : q0 ≤ q1 ≤ q0 + U

Note that only the purple area is taxed. Hence, given q1, the best choice of q0 is the one so that the price remains
the same, since it would lead to a nil purple area. Then, the profit will simply be Π1(q1). The optimum value for q1 is
then the same as in the problem in section 3.

In the end, the dispatch will be the same but there will be no tax.
Now, if demand is uncertain, the problem becomes very difficult. Thus, we will not try to solve it but we may assume

intuitively that we will probably not obtain an offer function constant between expected demand and expected demand
incremented by line capacity, especially if the standard deviation of demand is higher than line capacity.

Still, we may assume that companies will announce higher costs than they would have, had there been no such line
allocation. Although the dispatch would not change much, taxes would be quite low.



Chapter 9

Statements about this internship

This chapter has no scientific interest. It is a personnal reflection about my skills and my weaknesses, that this internship
has enhanced.

9.1 Working skills
During this project, I have had the chance to develop and improve my mathematical skills. I have been amazed by
the necessity for me to use plenty tools that I have learned at the Ecole Polytechnique in the last months before the
internship. The course of Operations Research by Dr. Bonnans and Dr. Gaubert and the course of Game Theory by
Dr. Sorin have turned out to be very useful. I have enjoyed applying them. I have also had the chance to program in
Ampl/CPLEX.

Beside pure science, my general knowledge has been increased as I have read a lot about electricity markets all over
the world. The fact that their liberalization is very recent (about two decades old for most countries) and that their
design is in constant evolution makes their study very interesting to study. In particular, the European transmission
network management is a burning issue.

I have taken pleasure in working in cooperation with my supervisor. Discussions about the work have always been
very fascinating. But I have also appreciated my flexibility and my freedom in my work, which have given me the chance
to take initiatives, to make attempts and to follow through my ideas.

9.2 Human skills
However, what I have appreciated the most during this internship is the opportunity to live and work in New Zealand.
This trip was a tremendous challenge for me, as I was leaving to a country at the other end of the world, in which I
knew nobody. My only contact was my supervisor’s email address. Before the trip, I was really afraid to be lost and
lonely far away from my friends and family, in this English-speaking country that possesses its own culture.

Despite my fears, I have enjoyed this place a lot. I have particularly loved the international and multicultural
environment, where, at lunch for instance, I was surrounded by people from diverse countries. Here is a little list of
nationalities of people I have met : Irish, Dutch, Canadian, Danish, Brazilian, Singaporean, Chinese, South Korean,
Indian, German, English, Chilean, Iranian, Colombian, Belgian. Do not forget about the local Kiwis, and those ever-
present French people. In particular, discussions about the football world cup were very exciting, despite the French
disaster. This experience makes me want to travel even more, and to work in very international places.

In this cosmopolitan environment, I have had the chance to practise English more than ever before. Although I have
had huge difficulties to understand the Kiwi accent and to take part in conversations at first, I now really enjoy talking
the language of Shakespeare. Not only have I intervened in group discussions, but I have also managed to tell stories
and make jokes, which has been a massive step for me.

Furthermore, I have been kind of surprised to meet 30-year-old students achieving their masters’ degree. However, I
have found their lifestyle very interesting, and I have realised that there is no age limit to start working in a company.
In particular, their attitudes have inspired me and incited me to think about extending my studies. I now consider
heading for a Ph. D.
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9.3 Conclusion about my personnal reflection
After 11 weeks in Auckland, I am definitely feeling at home here. I feel that I have succeeded both in achieving my
research project and in settling well in this city. The fact that I have overcome my fears and that I have risen to the
challenge has given me plenty of confidence for upcoming projects.

I am definitely looking forward to the next step of my studies, my Master’s Research at the Ecole Polytechnique of
Montreal.
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Conclusion

In this paper, we have mainly studied an alternative to the current HVDC line allocation. In a first part, we have made
hypotheses on the electricity network to simplify the equations and the study of the game problem of the alternative
allocation.

Then, in a naive first study, we have seen the possibility of unfairness and inefficiency. It actually occurs when line
rights are not delivered to the right firms and the right plants.

With another simplified model, we have shown the incentives for a competitive company to follow malicious strategies.
The reason of that is the possibility of increasing the southern price by the use of its supply function. Therefore, it is
ready to sacrifice important outputs to increase the price, and his profits.

The weirdest part of that is that the second player actually take advantage of that, not only because of the fact
that by sacrifying some outputs the first company allows the second to produce, but also because the increase of price
is profitable for the second company too. In fact, even when the number of companies is higher, a coalition that would
sacrifice the profits of player 2 to increase the southern price would maximize the cumulated profits of all companies.
Such behaviours must be feared.

What happens with the introduction of a spot market is an increase of choices for companies to set a developed
strategy. This leads more easily to market power.

In the problem with certain demand, we have shown that this leads to inefficiency and market power. Furthermore,
the optimal strategies for companies are mixed strategies. Therefore, datas of the market become uncertain, and the
incomes for the System Operator are not guaranteed. Instability occurs. Moreover, the high and uncertain spot prices
would be a wrong signal for companies who would like to enter the market. They should know that by entering the
market, they would probably deregulate the equilibrium and possibly greatly lower the price.

When uncertainty on demand is introduced, Nash Equilibria remain similar. The existence of two polar strategies
- setting the price or letting the price being set - leads to these mixtures that jeopardize the system with instability,
inefficiency and market power.

The pro-rata-with-incremental-profit allocation model we have introduced is not much better, as companies are still
incited to follow strategies that prevent them from paying most of taxes. Although market power diminishes, companies
are still tempted to give very high announced costs. The line operator revenues would probably not be high enough.

To conclude, the results of this paper suggest that the proposals that have been made would lead to instability,
inefficiency and market power, due to strategic behaviours. The criticisms that could be imputed to them are much
more serious than those of the current HVDC line allocation. In order to respond to these criticisms, taxing northern
consumers, who benefit from the line but do not pay, as well as the southern generators may be considered.
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.1 Appendix 1 : Source code of figure 7.9

* SFE model
*
* Written by Andy Philpott, based on Xinmin Hu’s model}
* Assume a discretization of demand shock}
* Gives a supply-function response to beta}
* Note: Assumes symmetric SFE}

SETS
i player / 1, 2 /
k discretization /1*51/;
;

scalar delta >0 to make constraints strict
/0.005/ ;

scalar r /3/ ;
*scalar pmax price cap
*/5.0/ ;
*scalar pmin price floor
*/0.01/ ;

parameter c(i) cost coefficient /
1 1
2 5 / ;

parameter d(k) demand shock /
1 0.00
2 0.02
.. ..
51 1.00
/ ;

*\$ontext
parameter q0(i,k) ;
parameter p0(k);

*q0(i,k) = d(k)/2;
*p0(k)= 3 + (d(k)/2)*log(d(k)/2) - 5.307*d(k)/2;
*\$offtext

positive variable
q(i,k) quantity offered by player i at demand k
pi(k) clearing price at demand level k
;

variable
s(i,k) slope of other player
t(i,k) slope of player i
pt(k)
u(k) error terms
error
;

equation
objective
response(i,k)
demand(k)
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stdef1(k)
stdef2(k)
decreasing1(i,k)
decreasing2(i,k)
decreasing3(k)
tilde(i,k)
monotonic1(k)
monotonic2(k)
monotonic3(i,k)
*symmetry(k)
;

objective .. error =e= 1000*sum(k,u(k)*u(k));

response(i,k) .. s(i,k)*(r - pi(k) - c(i)*q(i,k)) + q(i,k) =e= 0;
demand(k).. sum(i, q(i,k)) + u(k) =e= d(k) ;

stdef1(k).. t(’1’,k) =e= s(’2’,k) ;
stdef2(k).. s(’1’,k) =e= t(’2’,k);

decreasing1(i,k).. t(i,k) =l= 0;
decreasing2(i,k)\$(ord(k) lt card(k)).. q(i,k+1)- q(i,k) =g= 0;
decreasing3(k)\$(ord(k) lt card(k)).. pi(k+1) - pi(k) =l= 0;

tilde(i,k)\$(ord(k) lt card(k)).. q(i,k+1) - q(i,k) - t(i,k+1)*pi(k+1)
+ t(i,k)*pi(k) + (t(i,k+1)-t(i,k))* pt(k) =e= 0;

monotonic1(k).. pi(k) - delta =g= pt(k) ;
*monotonic1a(k)\$(ord(k) lt card(k)).. pt(k) + delta =l= pi(k+1) ;
monotonic2(k)\$(ord(k) lt card(k)).. pt(k) - delta =g= pi(k+1) ;
monotonic3(i,k)\$(ord(k) lt card(k)).. q(i,k) + delta =l= q(i,k+1) ;
*symmetry(k).. q(’1’,k) =e= q(’2’,k);

model sfe /all / ;

option nlp=conopt ;

option decimals = 8;

t.up(i,k)= -0.001 ;
s.up(i,k)= -0.001 ;
t.lo(i,k)= -5.0 ;
s.lo(i,k)= -5.0 ;
*q.l(i,k) = q0(i,k);
*pi.l(k)\$(ord(k) lt card(k)) = p0(k);
*pi.up(k)\$(ord(k) lt card(k))= p0(k)+0.2;
*pi.lo(k)\$(ord(k) lt card(k))= p0(k)-0.2;
q.up(i,’1’)= 0;
q.lo(i,’1’)= 0;
pi.up(’51’)=0.000;
pi.lo(’51’)=0.000;
pi.up(’1’)=3.000;
pi.lo(’1’)=3.000;

solve sfe minimising error using nlp;

*q.up(i,k)= q.l(i,k)+ 0.1;
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*q.lo(i,k)= q.l(i,k)- 0.1;
*c(’2’) = 2.5;
*solve sfe minimising error using nlp;
*pi.up(k)\$(ord(k) lt card(k)) = pi.l(k) + 0.2;
*pi.lo(k)\$(ord(k) lt card(k)) = pi.l(k) - 0.2;
c(’2’) = 3.0;

solve sfe minimising error using nlp;
*pi.up(k)\$(ord(k) lt card(k)) = pi.l(k) + 0.2;
*pi.lo(k)\$(ord(k) lt card(k)) = pi.l(k) - 0.2;
q.up(i,k)= q.l(i,k) + 0.1;
q.lo(i,k)= q.l(i,k) - 0.1;
c(’2’) = 4.0;

solve sfe minimising error using nlp;
*pi.up(k)\$(ord(k) lt card(k)) = pi.l(k) + 0.4;
*pi.lo(k)\$(ord(k) lt card(k)) = pi.l(k) - 0.4;
q.up(i,k)= q.l(i,k) + 0.1;
q.lo(i,k)= q.l(i,k) - 0.1;
c(’2’) = 5.0;
*pi.up(’50’)=0.000;
solve sfe minimising error using nlp;

display q0;
display p0;

FILE RES /D:\docs\2010\KimFrew\sfeLEN50.out/;
PUT RES;
RES.nd=5;
RES.nw=10;
RES.ap=0;

put "Quantity1 Quantity2 Price PTilde " / ;
loop (k,
put q.l(’1’,k);
put " ";
put q.l(’2’,k);
put " ";
put pi.l(k)
put " ";
put pt.l(k)
/;
) put /;
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