
 

In this paper  we will use Matlab to numerically solve the heat equation ( also 

known as diffusion equation) a partial differential equation that describes many 

physical precesses including conductive heat flow or the  diffusion of an impurity 

in a motionless fluid. 

In three-dimensional medium the heat equation is: 
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Here u is a function of (x,t,y,z)  that represents temeperature at time at position 

(x,y,z) 

The costant k depends on the material involved,it is called the thermal 

conductivity  in the case of heat flow and diffusion coefficient in the case of 

diffusion.To simplify matters let us assume  that the medium is one-

dimensional.This could represent   heat flow in a thin insulated wire or rod 

Then partial differential equation becomes 
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where u is temperature  at  time t  a distance x along the wire 

u=u(x,t) 

A finite difference solution 

To solve this partial differential equation we need both initial conditions of the 

form �(�, � = 0) = �(�) ,where �(�)  gives the temperature distirbution in the 

wire at time 0, and boundary conditions at the endpoints of the wire,call them 

� = �	���	� = � 



 

We choose so- called Dirichlet boundary conditions 

�(� = �, �) = ��; �(� = �, �) = �� which correspond to the temperature being 

held  steady at values�� and	�� at the two endpoints  

Though an exact solution is available in this scenario, let us instead illustrate the 

numerical method of finite differences. 

To begin with ,on computer we can only keep track of the temperature u 

at discrete set of times and discrete set of positions. 

Let times be 0, ∆�, 2∆�, … , �∆� ,and let the positions �, � + ∆�,… , �∆� = � 

let ��
� = �(� + �∆�, �∆�).Rewriting the partila differential equation  in terms of 

finite- difference approximations to the derivatives,we get 
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So we get 
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Thus  if  for a particualr n,we know the values of  ��
�	for all j we can solve 

equation above to find  ��
��� for each j; 
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after some algebric manipulation we get 
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In other words ,this equation tell us how to find  the temperature ditribution at 

time step n+1 given the temperature distribution at time step n 

Thus our numerical implementation of the heat equation is a discretized version 

of the microscopic description of diffusion we gave initially, that heat energy 

spreads due to random interactions between nearby particles. 

The following M-file which we have  named heat.m 

function u = heat(k, x, t, init, bdry) 
% solve the 1D heat equation on the rectangle described 
by 
% vectors x and t with u(x, t(1)) = init and Dirichlet 
% boundary conditions 
% u(x(1), t) = bdry(1), u(x(end), t) = bdry(2). 
J = length(x); 
N = length(t); 
dx = mean(diff(x)); 
dt = mean(diff(t)); 
l = k*dt/dx^2; 
u = zeros(N,J); 
u(1, :) = init; 
for n = 1:N-1 
u(n+1, 2:J-1) = l*(u(n, 3:J) + u(n, 1:J-2)) +... 
(1 - 2*l)*u(n, 2:J-1); 
u(n+1, 1) = bdry(1); 
u(n+1, J) = bdry(2); 
end 
 

end 
 

 



 

 The function takes as inputs  the value of k vectors of t and  and x values  

a vector int and  a vector bdry containing a pair of boundary values 

Let’s use the M-file above to solve the one-dimensional heat equation with 

k=5 on the interval−10≤x≤10 from time 0 to time 4, using boundary 

temperatures 16 and 26, and initial temperature distribution of 16 forx<0 

and 26 forx>0. You can imagine that two separate wires of length 10 with 

different temperatures are joined at time 0 at positionx=0, and each of 

their far ends remains in an environment that holds it at its initial 

temperature. We must choose values for t and x; let’s try ∆�=0.1 and 

∆�=0.6,  

tvals = linspace(0, 4, 41); 

xvals = linspace(-7, 7, 23); 

init = 21 + 7*sin(xvals); 

uvals = heat(5, xvals, tvals, init, [16 26]); 

surf(xvals, tvals, uvals) 

xlabel x; ylabel t; zlabel u 



 

Here we used surf  to show the entire solutionu(x,t).  

Conclusions 

 

The output is clearly unrealistic; notice the scale on the u axis! The numerical 

solution of partial differential equations is fraught with dangers, and instability 

like that seen above is a common problem with  finite difference schemes. For 

many partial differential equations a finite difference scheme will not work at all, 

but for the heat equation and similar equations it will work well with proper 

choice of∆�	 and	∆� 
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